【題目】如圖ABCABAC24厘米,∠B=∠C,BC16厘米,點(diǎn)DAB的中點(diǎn).點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)BPDCQP全等時(shí),v的值為_____ 厘米/秒.

【答案】46

【解析】

此題要分兩種情況:①當(dāng)BDPC時(shí),BPDCQP全等,計(jì)算出BP的長(zhǎng),進(jìn)而可得運(yùn)動(dòng)時(shí)間,然后再求v;②當(dāng)BDCQ時(shí),BDP≌△QCP,計(jì)算出BP的長(zhǎng),進(jìn)而可得運(yùn)動(dòng)時(shí)間,然后再求v

解:當(dāng)BDPC時(shí),BPDCQP全等,

∵點(diǎn)DAB的中點(diǎn),

BDAB12cm,

BDPC

BP16124cm),

∵點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),

∴運(yùn)動(dòng)時(shí)間時(shí)1s,

∵△DBP≌△PCQ,

BPCQ4cm,

v4÷14厘米/秒;

當(dāng)BDCQ時(shí),BDP≌△QCP

BD12cm,PBPC,

QC12cm,

BC16cm,

BP4cm,

∴運(yùn)動(dòng)時(shí)間為4÷22s),

v12÷26厘米/秒.

故答案為:46

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)的圖象過(guò)原點(diǎn)O和點(diǎn)A(1, ),且與x軸交于點(diǎn)B,AOB的面積為。

(1)求拋物線的解析式

(2)若拋物線的對(duì)稱軸上存在一點(diǎn)M,使△AOM的周長(zhǎng)最小M點(diǎn)的坐標(biāo);

(3)點(diǎn)Fx軸上一動(dòng)點(diǎn),過(guò)Fx軸的垂線交直線AB于點(diǎn)E,交拋物線于點(diǎn)P,PE=,直接寫出點(diǎn)E的坐標(biāo)(寫出符合條件的兩個(gè)點(diǎn)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形的面積為,依次取矩形各邊中點(diǎn)、、,順次連結(jié)各中點(diǎn)得到第個(gè)四邊形,再依次取四邊形各邊中點(diǎn)、、,順次連結(jié)各中點(diǎn)得到第個(gè)四邊形,……,按照此方法繼續(xù)下去,則第個(gè)四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角墻角AOBOAOB,且OAOB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉(cāng),且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長(zhǎng);

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價(jià)分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉(cāng)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)對(duì)數(shù)軸上的點(diǎn)P進(jìn)行如下操作:先把點(diǎn)P表示的數(shù)乘以,再把所得數(shù)對(duì)應(yīng)的點(diǎn)向右平移1個(gè)單位,得到點(diǎn)P的對(duì)應(yīng)點(diǎn)P′.點(diǎn)AB在數(shù)軸t,對(duì)線段AB上的每個(gè)點(diǎn)進(jìn)行上述操作后得到線段AB′,其中點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為A′,B′.如圖1,若點(diǎn)A表示的數(shù)是﹣3,則點(diǎn)A′表示的數(shù)是   ,若點(diǎn)B′表示的數(shù)是2,則點(diǎn)B表示的數(shù)是   ;已知線段AB上的點(diǎn)E經(jīng)過(guò)上述操作后得到的對(duì)應(yīng)點(diǎn)E'點(diǎn)E重合,則點(diǎn)E表示的數(shù)是   

2)在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(﹣20),B20),C2,4),對(duì)△ABC及其內(nèi)部的每個(gè)點(diǎn)進(jìn)行如下操作:把每個(gè)點(diǎn)的橫、縱坐標(biāo)都乘以同個(gè)實(shí)數(shù)a,將得到的點(diǎn)先向右平移m單位,冉向上平移n個(gè)單位(m0,n0),得到△ABC及其內(nèi)部的點(diǎn),其中點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為A′(12),B′(3,2).△ABC內(nèi)部是否存在點(diǎn)F,使得點(diǎn)F經(jīng)過(guò)上述操作后得到的對(duì)應(yīng)點(diǎn)F′與點(diǎn)F重合,若存在,求出點(diǎn)F的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知CACB,CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線.EF是直線CD上的兩點(diǎn),且∠BEC=∠CFAα

1)若直線CD在∠BCA的內(nèi)部,且E,F在射線CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:

如圖1,若∠BCA90°,α90°,則BE   CF;EF   |BEAF|(填“>”,“<”或“=”);

如圖2,若0°<∠BCA180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于α與∠BCA數(shù)量關(guān)系的條件   ,使中的兩個(gè)結(jié)論仍然成立,補(bǔ)全圖形并證明.

2)如圖3,若直線CD在∠BCA的外部,∠BCAα,請(qǐng)用等式直接寫出EF,BEAF三條線段的數(shù)量關(guān)系   .(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC中,BF是AC邊上中線,點(diǎn)D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長(zhǎng)最小時(shí),∠CFE的大小是( 。

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.

(1)求m的值和反比例函數(shù)的表達(dá)式;

(2)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形有一個(gè)內(nèi)角為120°,且過(guò)某一頂點(diǎn)的直線能將該 三角形分成兩個(gè)等腰三角形,那么這個(gè)三角形最小的內(nèi)角度數(shù)是

A. 15°B. 40C. 15°20°D. 15°40°

查看答案和解析>>

同步練習(xí)冊(cè)答案