【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.將△ABC向右平移6個(gè)單位長度,再向下平移6個(gè)單位長度得到△A1B1C1 . (圖中每個(gè)小方格邊長均為1個(gè)單位長度).

(1)在圖中畫出平移后的△A1B1C1;
(2)直接寫出△A1B1C1各頂點(diǎn)的坐標(biāo).A1;B1;C1
(3)求出△ABC的面積.

【答案】
(1)

解:如圖,△A1B1C1即為所求;


(2)(4,﹣2);(1,﹣4);(2,﹣1)
(3)

解:SABC=3×3﹣ ×1×3﹣ ×1×2﹣ ×2×3=


【解析】(1)根據(jù)圖形平移的性質(zhì)畫出△A1B1C1即可;(2)根據(jù)各點(diǎn)在坐標(biāo)系中的位置寫出各點(diǎn)坐標(biāo)即可;(3)利用正方形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(4,0)及在第一象限的動(dòng)點(diǎn)Pxy),且x+y=6,O為坐標(biāo)原點(diǎn),設(shè)△OPA的面積為S
(1)求S關(guān)于x的函數(shù)解析式;
(2)求x的取值范圍;
(3)當(dāng)S=6時(shí),求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點(diǎn)D,交AC的延長線于點(diǎn)E,連接ED,BE.(1)求證:△ABD∽△AEB;(2)當(dāng)時(shí),求tanE;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+bk≠0)圖象過點(diǎn)(0,2),且與兩坐標(biāo)軸圍成的三角形面積為2,則一次函數(shù)的解析式為( 。.
A.y=x+2
B.y=-x+2
C.y=x+2或y=-x+2
D.y=-x+2或y=x-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O , 點(diǎn)EBC的中點(diǎn)OE=3cm , 則AB的長為(  )
A.3cm
B.6cm
C.9cm
D.12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一臺(tái)自動(dòng)測溫記錄儀的圖象,它反映了我市冬季某天氣溫T隨時(shí)間t變化而變化的關(guān)系,觀察圖象得到下列信息,其中錯(cuò)誤的是( 。.

A.凌晨4時(shí)氣溫最低為-3℃
B.14時(shí)氣溫最高為8℃
C.從0時(shí)至14時(shí),氣溫隨時(shí)間增長而上升
D.從14時(shí)至24時(shí),氣溫隨時(shí)間增長而下降

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2+3x=0的解是()

A.x=-3B.x1=0,x2=3C.x1=0,x2=-3D.x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銷售有限公司到某汽車制造有限公司選購A、B兩種型號(hào)的轎車,用300萬元可購進(jìn)A型轎車10輛,B型轎車15輛;用300萬元可購進(jìn)A型轎車8輛,B型轎車18輛.
(1)求A、B兩種型號(hào)的轎車每輛分別多少元?
(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準(zhǔn)備用不超過400萬元購進(jìn)A、B兩種型號(hào)轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,正確的是( 。.
A.32=
B. =﹣3
C.m6÷m2=m3
D.(a﹣b)2=a2﹣b2

查看答案和解析>>

同步練習(xí)冊(cè)答案