(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點O(0,0).
(1)求拋物線的解析式;
(2)過P點作平行于x軸的直線PC交y軸于C點,在拋物線對稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點Q,過點Q作直線QA平行于y軸交x軸于A點,交直線PC于B點,直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點Q,使得△OPC與△PQB相似?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)如果符合(2)中的Q點在x軸的上方,連接OQ,矩形OABC內(nèi)的四個三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

【答案】分析:(1)將已知的三點坐標(biāo)代入拋物線解析式中進行求解即可.
(2)可根據(jù)拋物線的解析式設(shè)出Q點的坐標(biāo),要使△OPC與△PQB相似,可分兩種情況:
①△OCP∽△PBQ,此時∠COP=∠BPQ,,用Q點的坐標(biāo)表示出BP、BQ的長,根據(jù)線段的比例關(guān)系式即可求出Q點的坐標(biāo).
②△OCP∽△QPB,此時∠CPO=∠BPQ,,方法同①
(3)根據(jù)(2)得出的Q點的坐標(biāo)進行判斷即可,注意運用正方形的性質(zhì)和一些特殊角.
解答:解:(1)由已知可得:
解之得,a=-,b=,c=0.
因而得,拋物線的解析式為:y=-x2+x.

(2)存在.
設(shè)Q點的坐標(biāo)為(m,n),則
要使△OCP∽△PBQ,
則有,即,
解之得,m1=2,m2=
當(dāng)m1=2時,n=2,
所以得Q(2,2)
要使△OCP∽△QPB,則有,即
解之得,m1=3,m2=,
當(dāng)m=時,即為P點,
當(dāng)m1=3時,n=-3,
所以得Q(3,-3).
故存在兩個Q點使得△OCP與△PBQ相似.Q點的坐標(biāo)為(2,2),(3,-3).

(3)在Rt△OCP中,
因為tan∠COP=
所以∠COP=30度.
當(dāng)Q點的坐標(biāo)為(2,2)時,∠BPQ=∠COP=30度.
所以∠OPQ=∠OCP=∠B=∠QAO=90度.
因此,△OPC,△PQB,△OPQ,△OAQ都是直角三角形.
又在Rt△OAQ中,
因為tan∠QOA=
所以∠QOA=30度.
即有∠POQ=∠QOA=∠QPB=∠COP=30度.
所以△OPC∽△PQB∽△OQP∽△OQA,
又因為QP⊥OP,QA⊥OA,∠POQ=∠AOQ=30°,
所以△OQA≌△OQP.
點評:本題是一道涉及函數(shù)、相似、三角等知識的綜合題,解決第3題的關(guān)鍵在于通過觀察得出對結(jié)果的合理猜想在進行證明,難度應(yīng)該不會很大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點O(0,0).
(1)求拋物線的解析式;
(2)過P點作平行于x軸的直線PC交y軸于C點,在拋物線對稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點Q,過點Q作直線QA平行于y軸交x軸于A點,交直線PC于B點,直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點Q,使得△OPC與△PQB相似?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)如果符合(2)中的Q點在x軸的上方,連接OQ,矩形OABC內(nèi)的四個三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+x+2.
(1)當(dāng)a=-1時,求此拋物線的頂點坐標(biāo)和對稱軸;
(2)若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
(3)當(dāng)a=a1時,拋物線y=ax2+x+2與x軸的正半軸相交于點M(m,0);當(dāng)a=a2時,拋物線y=ax2+x+2與x軸的正半軸相交于點N(n,0).若點M在點N的左邊,試比較a1與a2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年遼寧省大連市旅順口區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點O(0,0).
(1)求拋物線的解析式;
(2)過P點作平行于x軸的直線PC交y軸于C點,在拋物線對稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點Q,過點Q作直線QA平行于y軸交x軸于A點,交直線PC于B點,直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點Q,使得△OPC與△PQB相似?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)如果符合(2)中的Q點在x軸的上方,連接OQ,矩形OABC內(nèi)的四個三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖南省郴州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點O(0,0).
(1)求拋物線的解析式;
(2)過P點作平行于x軸的直線PC交y軸于C點,在拋物線對稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點Q,過點Q作直線QA平行于y軸交x軸于A點,交直線PC于B點,直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點Q,使得△OPC與△PQB相似?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)如果符合(2)中的Q點在x軸的上方,連接OQ,矩形OABC內(nèi)的四個三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

查看答案和解析>>

同步練習(xí)冊答案