【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)為(0,3),則方程ax2+bx+c=0(a≠0)的解為( )
A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4
【答案】C
【解析】∵拋物線的對稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),
∴拋物線與x軸另一個(gè)交點(diǎn)坐標(biāo)為(﹣3,0).
∴ax2+bx+c=0(a≠0)的解為x1=1,x2=﹣3.
所以答案是:C.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的性質(zhì)和拋物線與坐標(biāo)軸的交點(diǎn),需要了解增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小;一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司以每噸元的價(jià)格收購了噸某種藥材,若直接在市場上銷售,每噸的售價(jià)是元.該公司決定加工后再出售,相關(guān)信息如下表所示:
工藝 | 每天可加工藥材的噸數(shù) | 成品率 | 成品售價(jià) (元/噸) |
粗加工 | 14 | 80% | 6000 |
精加工 | 6 | 60% | 11000 |
(注:①成品率80%指加工100噸原料能得到80噸可銷售藥材;②加工后的廢品不產(chǎn)生效益.)
受市場影響,該公司必須在天內(nèi)將這批藥材加工完畢.
(1)若全部粗加工,可獲利_______________________元;
(2)若盡可能多的精加工,剩余的直接在市場上銷售,可獲利_____________元;
(3)若部分粗加工,部分精加工,恰好天完成,求可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D以1cm/s 的速度從點(diǎn)A出發(fā)到點(diǎn)B止,動(dòng)點(diǎn)E以2cm/s 的速度從點(diǎn)C出發(fā)到點(diǎn)A止,且兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),求運(yùn)動(dòng)的時(shí)間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要舉辦國慶聯(lián)歡會(huì),主持人站在舞臺(tái)的黃金分割點(diǎn)處最自然得體.如圖,若舞臺(tái)AB的長為20m,C為AB的一個(gè)黃金分割點(diǎn)(AC<BC),則AC的長為(結(jié)果精確到0.1m)( )
A.6.7m
B.7.6m
C.10m
D.12.4m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=60cm,在直線AB上畫線段BC,使BC=20cm,點(diǎn)D是AC的中點(diǎn),求CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,點(diǎn)B在x軸上,∠ABO=60°,若點(diǎn)D(1,0)且BD=2OD.把△ABO繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m°(0<m<180)后,點(diǎn)B恰好落在初始Rt△ABO的邊上,此時(shí)的點(diǎn)B記為B′,則點(diǎn)B′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法,正確的是( )
A. 若ac=bc,則a=b
B. 30.15°=30°15′
C. 一個(gè)圓被三條半徑分成面積比2:3:4的三個(gè)扇形,則最小扇形的圓心角為90°
D. 鐘表上的時(shí)間是9點(diǎn)40分,此時(shí)時(shí)針與分針?biāo)傻膴A角是50°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com