【題目】如圖,二次函數(shù)的圖象與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求D點(diǎn)的坐標(biāo);
(2)根據(jù)圖象寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
【答案】(1)(-2,3);(2);(3)當(dāng)或
【解析】試題分析:(1)由圖可得A(3,0),B(1,0),C(0,3),即可得到拋物線的對(duì)稱軸為,從而求得結(jié)果;
(2)設(shè)一次函數(shù)的解析式為,由圖象過點(diǎn)(-2,3)和(1,0)根據(jù)待定系數(shù)法即可求得結(jié)果;
(3)找到一次函數(shù)的圖象在二次函數(shù)的上方的部分對(duì)應(yīng)的x值的范圍即可.
(1)由圖可得A(3,0),B(1,0),C(0,3)
∴對(duì)稱軸為
∴D點(diǎn)的坐標(biāo)為(-2,3);
(2)設(shè)一次函數(shù)的解析式為
∵圖象過點(diǎn)(-2,3)和(1,0)
∴,解得
∴一次函數(shù)的解析式為;
(3)當(dāng)或時(shí),一次函數(shù)的值大于二次函數(shù)的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)平面中,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(20,0),點(diǎn)B在第一象限內(nèi),BO=10,sin∠BOA=.
(1)在圖中,求作△ABO的外接圓;(尺規(guī)作圖,不寫作法但需保留作圖痕跡)
(2)求點(diǎn)B的坐標(biāo)與cos∠BAO的值;
(3)若A,O位置不變,將點(diǎn)B沿軸正半軸方向平移使得△ABO為等腰三角形,請(qǐng)直接寫出平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)D在AC上,點(diǎn)E在AB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程ax2+2x﹣1=0有兩個(gè)實(shí)數(shù)根,則a的取值范圍是( )
A. a≤1B. a≥﹣1且a≠0C. a>1且a≠0D. a≥﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面解答過程,并填空或填理由.
已知如下圖,點(diǎn)E、F分別是AB和CD上的點(diǎn),DE、AF分別交BC于點(diǎn)G、H,∠A=∠D,∠1=∠2.
試說明:∠B=∠C.
解:∵∠1=∠2(已知)
∠2=∠3()
∴∠3=∠1(等量代換)
∴AF∥DE()
∴∠4=∠D()
又∵∠A=∠D(已知)
∴∠A=∠4(等量代換)
∴AB∥CD()
∴∠B=∠C().
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式為(3x+a)(x+b),其中a、b均為整數(shù),則a+3b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B在直線y=x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( )
A.(0,0)
B.( ,﹣ )
C.(﹣ ,﹣ )
D.(﹣ ,﹣ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),BE的長為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com