【題目】已知:在△ABC中,∠BAC=90°,AB=AC.
(1)如圖1,將線段AC繞點A逆時針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD于點E,連結(jié)CE.
①求證:∠AED=∠CED;
②用等式表示線段AE、CE、BD之間的數(shù)量關(guān)系(直接寫出結(jié)果);
(2)在圖2中,若將線段AC繞點A順時針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD的延長線于點E,連結(jié)CE.請補全圖形,并用等式表示線段AE、CE、BD之間的數(shù)量關(guān)系,并證明.
【答案】(1)①證明見解析;②BD=2CE+AE,理由見解析;(2)補圖見解析,2CE﹣AE=BD,證明見解析.
【解析】
(1)①由旋轉(zhuǎn)的性質(zhì)可得AC=AD,∠DAC=60°,由”SAS”可證△ABE≌ACE,可得∠3=∠4=15°,由三角形外角的性質(zhì)可得結(jié)論;②過點A作AH⊥BD于點H,由等腰三角形的性質(zhì)和直角三角形性質(zhì)可得BD=2BH=2(BE+EH)=2BE+AE=2EC+AE;
(2)以A為頂點,AE為一邊作∠EAF=60°,AF交DB延長線于點F,通過證明△CAE≌△DAF和△BAE≌△CAE,可得CE=DF,BE=CE,即可得2CE-AE=BD.
證明:(1)
①∵將線段AC繞點A逆時針旋轉(zhuǎn)60°得到AD,
∴AC=AD,∠DAC=60°
∴∠BAD=∠BAC+∠CAD=150°,且AB=AC=AD
∴∠3=∠5=15°
∵∠BAC=90°,AB=AC,AE平分∠BAC
∴∠1=∠2=45°,∠ABC=∠ACB=45°
又∵AE=AE,
∴△ABE≌△ACE(SAS)
∴∠3=∠4=15°
∴∠6=∠7=30°
∴∠DEC=∠6+∠7=60°
∵∠AED=∠3+∠1=60°
∴∠AED=∠CED
②BD=2CE+AE
理由如下:
過點A作AH⊥BD于點H,
∵∠EBC=∠ECB
∴BE=CE,
∵∠AED=60°,AH⊥BD
∴AE=2EH
∵AB=AD,AH⊥BD
∴BD=2BH=2(BE+EH)=2BE+AE=2EC+AE
(2)補全圖形如圖,
2CE﹣AE=BD
理由如下:
如圖2,以A為頂點,AE為一邊作∠EAF=60°,AF交DB延長線于點F.
∵∠BAC=90°,AB=AC,AE平分∠BAC
∴∠BAE=∠CAE=45°,∠ABC=∠ACB=45°.
∵將線段AC繞點A逆時針旋轉(zhuǎn)60°得到AD,
∴AC=AD,∠DAC=60°
∴∠DAE=∠DAC﹣∠CAE=15°,AB=AD
∴∠ABD=∠ADB,∠BAD=30°
∴∠ABD=∠ADB=75°
∴∠AED=∠ADB﹣∠DAE=60°
∵∠EAF=60°
又∵∠EAF=60°,
∴∠F=60°
∴△AEF是等邊三角形.
∴AE=AF=EF.
∵AC=AD,∠CAE=∠DAF=45°,AE=AF,
∴△CAE≌△DAF(SAS).
∴CE=DF.
∵AB=AC,∠BAE=∠CAE=45°,AE=AE,
∴△BAE≌△CAE(SAS).
∴BE=CE.
∴BE=CE.
∵DF+BE﹣EF=BD,
∴2CE﹣AE=BD
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是 ( )
A. 有三個實數(shù)根 B. 有兩個實數(shù)根 C. 有一個實數(shù)根 D. 無實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點在邊上,且,點為邊上的動點,將沿直線翻折,點落在點處,則點到邊距離的最小值是( )
A.3.2B.2C.1.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了矩形后,數(shù)學(xué)活動小組開展了探究活動.如圖1,在矩形中,,,點在上,先以為折痕將點往右折,如圖2所示,再過點作,垂足為,如圖3所示.
(1)在圖3中,若,則的度數(shù)為______,的長度為______.
(2)在(1)的條件下,求的長.
(3)在圖3中,若,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.
(1)求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:如圖,拋物線與坐標(biāo)軸分別交于點, 點是線段上方拋物線上的一個動點,
(1)求拋物線解析式:
(2)當(dāng)點運動到什么位置時,的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)y=x+b的圖象交于A,B兩點,點A和點B的橫坐標(biāo)分別為1和﹣2,這兩點的縱坐標(biāo)之和為1.
(1)求反比例函數(shù)的表達(dá)式與一次函數(shù)的表達(dá)式;
(2)當(dāng)點C的坐標(biāo)為(0,﹣1)時,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,內(nèi)接于,AD是直徑,的平分線交BD于H,交于點C,連接DC并延長,交AB的延長線于點E.
(1)求證:;
(2)若,求的值
(3)如圖2,連接CB并延長,交DA的延長線于點F,若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為放置在水平桌面l上的臺燈,底座的高AB為5cm,長度均為20cm的連桿BC、CD與AB始終在同一平面上.
(1)轉(zhuǎn)動連桿BC,CD,使∠BCD成平角,∠ABC=150°,如圖2,求連桿端點D離桌面l的高度DE.
(2)將(1)中的連桿CD再繞點C逆時針旋轉(zhuǎn),經(jīng)試驗后發(fā)現(xiàn),如圖3,當(dāng)∠BCD=150°時臺燈光線最佳.求此時連桿端點D離桌面l的高度比原來降低了多少厘米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com