【題目】乘法公式的探究及應用.

(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);

(3)比較圖1、圖2陰影部分的面積,可以得到公式 ;

(4)運用你所得到的公式,計算下列各題:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

【答案】1a2﹣b22a﹣b,a+b,(a+b)(a﹣b)(3)99.96(4)①99.96②4m2﹣n2+2np﹣p2

【解析】

試題分析:(1)利用正方形的面積公式就可求出;

(2)仔細觀察圖形就會知道長,寬,由面積公式就可求出面積;

(3)建立等式就可得出;

(4)利用平方差公式就可方便簡單的計算.

解:(1)利用正方形的面積公式可知:陰影部分的面積=a2﹣b2;

故答案為:a2﹣b2

(2)由圖可知矩形的寬是a﹣b,長是a+b,所以面積是(a+b)(a﹣b);

故答案為:a﹣b,a+b,(a+b)(a﹣b);

(3)(a+b)(a﹣b)=a2﹣b2(等式兩邊交換位置也可);

故答案為:(a+b)(a﹣b)=a2﹣b2;

(4)①解:原式=(10+0.2)×(10﹣0.2),

=102﹣0.22,

=100﹣0.04,

=99.96;

②解:原式=[2m+(n﹣p)]×[2m﹣(n﹣p)],

=(2m)2﹣(n﹣p)2,

=4m2﹣n2+2np﹣p2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形、矩形、菱形、等腰三角形、正方形中是軸對稱圖形的有()

A、1 B、2 C、3 D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經過第2016次操作后得到的折痕D2015E2015到BC的距離記為h2016,到BC的距離記為h2016.若h1=1,則h2016的值為( )

A. B.1﹣ C. D.2﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖直線AB、CD、EF相交于點O,是AOC的鄰補角是 DOA的對頂角是 ,若AOC=50°,則BOD= 度,COB= 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l是經過點(1,0)且與y軸平行的直線.RtABC中直角邊AC=4,BC=3.將BC邊在直線l上滑動,使A,B在函數(shù)的圖象上.那么k的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】推理填空:如圖:

1=2,

(內錯角相等,兩直線平行);

DAB+ABC=180°

(同旁內角互補,兩直線平行);

時,

C+ABC=180°(兩直線平行,同旁內角互補);

時,

3=C (兩直線平行,同位角相等).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用反證法證明等腰三角形的底角是銳角時首先應假設___________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若x=﹣1是關于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a2+2a+b24b+5=0,求ab的值.

查看答案和解析>>

同步練習冊答案