如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,BD是⊙O的切線.∠BAD=30°,邊BD交圓于點D,求∠B.
分析:由OA=OD∠ADO=∠BAD=30°,根據(jù)三角形外角性質(zhì)得∠BOD=60°,再根據(jù)切線的性質(zhì)得到OD⊥BD,則∠BDO=90°,然后利用互余計算∠B的度數(shù).
解答:解:∵OA=OD,
∴∠ADO=∠BAD=30°,
∴∠BOD=60°
∵BD是⊙O的切線,
∴OD⊥BD,
∴∠BDO=90°,
∴∠B=90°-∠BOD=90°-60°=30°.
點評:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點;經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,∠BAD=∠B=30°,邊BD交圓于點D,求證BD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,連接AD,BD,∠A=∠B=30°,圓的半徑R.
(1)求證:BD是⊙O的切線;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,∠BAD=∠B=30°,邊BD交圓于點D.
(1)求證:BD是⊙O的切線.
(2)若⊙O的半徑為2,求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆浙江省溫嶺市四校聯(lián)考九年級上學期期中考試數(shù)學試卷(帶解析) 題型:解答題

如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,∠BAD=∠B=30°,邊BD交圓于點D。

(1)求證BD是⊙O的切線。
(2)若⊙O的半徑為2,求弦AD的長。

查看答案和解析>>

同步練習冊答案