【題目】線段AB兩端點(diǎn)的坐標(biāo)分別為A(2,4),B(5,2),若將線段AB平移,使得點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C(3,﹣1).則平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為

【答案】(0,1)
【解析】解:∵B(5,2),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C(3,﹣1).
∴變化規(guī)律是橫坐標(biāo)減2,縱坐標(biāo)減3,
∵A(2,4),
∴平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為 (0,1),
故答案為(0,1).
先得到點(diǎn)B的對(duì)應(yīng)規(guī)律,依此得到A的坐標(biāo)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為a cm的正方形內(nèi),截去兩個(gè)以正方形的邊長(zhǎng)a cm為直徑的半圓,(結(jié)果保留π)

(1)圖中陰影部分的周長(zhǎng)為cm.
(2)圖中陰影部分的面積為cm2
(3)當(dāng)a=4時(shí),求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果△ABC的邊BC的垂直平分線經(jīng)過(guò)頂點(diǎn)A,與BC相交于點(diǎn)D,且AB=2AD,則△ABC中,最大一個(gè)內(nèi)角的度數(shù)為度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下列三個(gè)數(shù)為邊長(zhǎng)的三角形能組成直角三角形的是( )

A.4,5,6B.8,12,13C.6,7,8D.6,8,10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,兩根旗桿間相距12m,某人從B點(diǎn)沿BA走向A,一定時(shí)間后他到達(dá)點(diǎn)M,此時(shí)他仰望旗桿的頂點(diǎn)C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運(yùn)動(dòng)速度為1m/s,求這個(gè)人運(yùn)動(dòng)了多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線的方程C1 (m0)x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).

(1)若拋物線C1過(guò)點(diǎn)M(2, 2),求實(shí)數(shù)m的值;

(2)在(1)的條件下,求BCE的面積;

(3)在(1)的條件下,在拋物線的對(duì)稱(chēng)軸上找一點(diǎn)H,使得BHEH最小,求出點(diǎn)H的坐標(biāo);

(4)在第四象限內(nèi),拋物線C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與BCE相似?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù)5,3,-1,0,9的極差是 ( )

A.-7 B.5 C. 7 D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大樓的頂部有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15(i=1是指坡面的鉛直高度BH與水平長(zhǎng)度AH的比).

(1)求點(diǎn)B距水平面AE的高度BH;

(2)求廣告牌CD的高度.

(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正比例函數(shù)y=kx(k為常數(shù),且k≠0)的函數(shù)值y隨著x的增大而增減小,則k的值可以是 .(寫(xiě)出一個(gè)即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案