【題目】軸對(duì)稱是指______ 個(gè)圖形的位置關(guān)系,軸對(duì)稱圖形是指______ 個(gè)具有特殊形狀的圖形.

【答案】兩;一.

【解析】

關(guān)于某條直線對(duì)稱的一個(gè)圖形叫軸對(duì)稱圖形.直線兩旁的部分能夠互相重合的兩個(gè)圖形叫做這兩個(gè)圖形成軸對(duì)稱.

軸對(duì)稱是指兩個(gè)圖形的位置關(guān)系,軸對(duì)稱圖形是指一個(gè)具有特殊形狀的圖形.

故答案為:兩,一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過(guò)點(diǎn)C、AA,求此拋物線的解析式;

(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問(wèn):當(dāng)點(diǎn)M在何處時(shí),AMA的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);

(3)若P為拋物線上一動(dòng)點(diǎn),Nx軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(﹣5,3)在平面直角坐標(biāo)系中所在的位置是( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A1的坐標(biāo)為(1,0),A2y軸的正半軸上,且∠A1A2O=30°,過(guò)點(diǎn)A2A2A3⊥A1A2,垂足為A2,交x軸于點(diǎn)A3;過(guò)點(diǎn)A3A3A4⊥A2A3,垂足為A3,交y軸于點(diǎn)A4;過(guò)點(diǎn)A4A4A5⊥A3A4,垂足為A4,交x軸于點(diǎn)A5;過(guò)點(diǎn)A5A5A6⊥A4A5,垂足為A5,交y軸于點(diǎn)A6;按此規(guī)律進(jìn)行下去,則點(diǎn)A2016的縱坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)等腰三角形的兩邊長(zhǎng)分別是25,則它的周長(zhǎng)為( )

A. 12B. 9C. 129D. 97

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=-x,點(diǎn)A1坐標(biāo)為(-3,0). 過(guò)點(diǎn)A1x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫弧交x軸負(fù)半軸于點(diǎn)A2,再過(guò)點(diǎn)A2x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸負(fù)半軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2016的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形紙片ABCD中,AB=6cm,BC=8cm,現(xiàn)將其沿EF對(duì)折,使得點(diǎn)C與點(diǎn)A重合,則AF長(zhǎng)為(
A. cm
B. cm
C. cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1) × ÷
(2)( )+(
(3) +6
(4)(2 ﹣3 )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線AB,CD相交于點(diǎn)O作∠DOE=BOD,OF平分∠AOE.

(1)判斷OFOD的位置關(guān)系;

(2)若∠AOC∶∠AOD=15,求∠EOF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案