【題目】解不等式組
請結(jié)合題意,完成本題解答過程.
(1)解不等式①,得 ,依據(jù)是 .
(2)解不等式②,得 .
(3)解不等式③,得 .
(4)把不等式①,②和③的解集在數(shù)軸上表示出來.
(5)從圖中可以找出三個不等式解集的公共部分,得不等式組的解集 .
(6)根據(jù)不等式組的解集確立出該不等式組的最大整數(shù)解為 .
【答案】(1)x≥﹣3、不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變;(2)x>﹣2;(3)x<2;(4)見解析;(5)﹣2<x<2;(6)x=1.
【解析】
分別求出每一個不等式的解集,根據(jù)各不等式解集在數(shù)軸上的表示,確定不等式組的解集,并找到最大整數(shù)解.
解:(1)解不等式①,得x≥﹣3,依據(jù)是:不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變.
(2)解不等式②,得x>﹣2.
(3)解不等式③,得x<2.
(4)把不等式①,②和③的解集在數(shù)軸上表示出來如下:
(5)從圖中可以找出三個不等式解集的公共部分,得不等式組的解集:﹣2<x<2.
(6)根據(jù)不等式組的解集確立出該不等式組的最大整數(shù)解為:x=1;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備五一組織老師去隆中參加諸葛亮文化節(jié),現(xiàn)有甲、乙兩家旅行社表示對老師優(yōu)惠,設(shè)參加文化節(jié)的老師有x人,甲、乙兩家旅行社實際收費為y1、y2,且它們的函數(shù)圖象如圖所示,根據(jù)圖象信息,請你回答下列問題:
(1)當(dāng)參加老師的人數(shù)為多少時,兩家旅行社收費相同?
(2)求出y1、y2關(guān)于x的函數(shù)關(guān)系式?
(3)如果共有50人參加時,選擇哪家旅行社合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐火車從上海到婁底,高鐵G1329次列車比快車K575次列車少要9小時,已知上海到婁底的鐵路長約1260千米,G1329的平均速度是K575的2.5倍.
(1)求K575的平均速度;
(2)高鐵G1329從上海到婁底只需幾小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE=DF,DE⊥AB,DF⊥AC,垂足分別是E、F.現(xiàn)有下列結(jié)論:①AD平分∠BAC;②AD⊥BC;③AD上任意一點到AB、AC的距離相等;④AD上任意一點到BC兩端點的距離相等.其中正確結(jié)論的個數(shù)有( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[知識生成]通常,用兩種不同的方法計算同一個圖形的面積,可以得到一個恒等式.例如:如圖①是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的形狀拼成一個正方形.請解答下列問題:
(1)圖②中陰影部分的正方形的邊長是________________;
(2)請用兩種不同的方法求圖②中陰影部分的面積:
方法1:________________________;方法2:_______________________;
(3)觀察圖②,請你寫出、、之間的等量關(guān)系是__________;
(4)根據(jù)(3)中的等量關(guān)系解決如下問題:若,,則=________;
[知識遷移]
類似地,用兩種不同的方法計算同一幾何體的體積,也可以得到一個恒等式.
(5)根據(jù)圖③,寫出一個代數(shù)恒等式:____________________________;
(6)已知,,利用上面的規(guī)律求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點O是AC的中點,AC=2AB,延長AB至G,使BG=AB,連接GO交BC于E,延長GO交AD于F,連接AE.
求證:(1)△ABC≌△AOG;
(2)猜測四邊形AECF的形狀并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等腰直角三角形,∠ACB=90°,CD是斜邊AB上的中線,且CD=2,點E是線段BD上任意一點,以CE為邊向左側(cè)作正方形CEFG,EF交BC于點M,連接BG交EF于點N.
(1)證明:△CAE≌△CBG;
(2)設(shè)DE=x,BN=y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值;
(3)當(dāng)DE=2 ﹣2時,求∠BFE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com