【題目】如圖1所示,在平面直角坐標(biāo)系中,、、,其中、滿足關(guān)系式,平移使點(diǎn)與點(diǎn)重合,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn).

1)直接寫出、兩點(diǎn)的坐標(biāo),則____________)、____________.

2)如圖1,過點(diǎn)軸交于點(diǎn),猜想數(shù)量關(guān)系,并說明理由.

3)如圖2,過點(diǎn)軸交軸于點(diǎn),軸上點(diǎn)左側(cè)的一動(dòng)點(diǎn),連接,平分,平分,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的值是否變化?如果變化,請說明理由;如果不變,請求出其值.

【答案】13;0;-2;1;(2)互補(bǔ),理由見解析;(3)不變;.

【解析】

1)根據(jù)算術(shù)平方根的非負(fù)性和平方的非負(fù)性即可求出ab的值,從而求出AB的坐標(biāo),再根據(jù)A、B的坐標(biāo)即可發(fā)現(xiàn)點(diǎn)A到點(diǎn)B的平移規(guī)律,從而得到:點(diǎn)C到點(diǎn)D的平移規(guī)律,即可求出D點(diǎn)坐標(biāo);

2)延長DECA交于點(diǎn)P,根據(jù)平行線的性質(zhì)即可證出:=P=OAC,然后根據(jù)平角的定義即可得:∠OAC+∠CAG=180°,從而得到:互補(bǔ);

3)根據(jù)角平分線的定義可得:∠ACM=,∠ACN=,從而得出∠MCN=ACN-∠ACM=,再根據(jù)平行線的性質(zhì)可得:∠AQC=FCQ,即可求出的值.

解:(1)∵

解得:

∴點(diǎn)A坐標(biāo)為:(3,0),點(diǎn)B的坐標(biāo)為:(0,4

∵平移使點(diǎn)與點(diǎn)重合,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn)

由坐標(biāo)可知:點(diǎn)A到點(diǎn)B的平移規(guī)律為:先向左平移3個(gè)單位,再向上平移4個(gè)單位

∴點(diǎn)C到點(diǎn)D的平移規(guī)律為:先向左平移3個(gè)單位,再向上平移4個(gè)單位

∴點(diǎn)D的坐標(biāo)為:(13,﹣34=(-2,1);

2)互補(bǔ),理由如下,

延長DECA交于點(diǎn)P,如下圖所示

BDCA

=P

DEy

DEx

=P=OAC

∵∠OAC+∠CAG=180°

+∠CAG=180°

互補(bǔ);

3)不變,

平分,平分,

∴∠ACM=,∠ACN=,

∴∠MCN=ACN-∠ACM===

軸,

∴∠AQC=FCQ,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201271日起某市執(zhí)行新版居民階梯電價(jià),小明同學(xué)家收到了新政后的第一張電費(fèi)單,小明爸爸說:“小明,請你計(jì)算一下,這個(gè)月的電費(fèi)支出與新政前相比是多了還是少了?”于是小明上網(wǎng)了解了有關(guān)電費(fèi)的收費(fèi)情況,得到如下兩表:

20041月至20126月執(zhí)行的收費(fèi)標(biāo)準(zhǔn):

月用電量(度)50度有以下部分

50度有以下部分

超過50度但不超過200度部分

超過200度以上部分

單價(jià)(元/度)

0.53

0.56

0.63

20127月起執(zhí)行的收費(fèi)標(biāo)準(zhǔn):

月用電量(度)

230度有以下部分

超過230度但不超過400度部分

超過400度以上部分

單價(jià)(元/度)

0.53

0.58

0.83

1)若小明家20127月份的用電量為200度,則小明家7月份的電費(fèi)支出是多少元?比新政前少了多少元?

2)若新政后小明家的月用電量為a度,請你用含a的代數(shù)式表示當(dāng)月的電費(fèi)支出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC6,BC8D,E分別為邊BCAC上一點(diǎn),將△ADE沿著直線AD翻折,點(diǎn)E落在點(diǎn)F處,如果DFBC,△AEF是等邊三角形,那么AE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動(dòng):購買原價(jià)超過500元的商品,超過500元的部分可以享受打折優(yōu)惠.若購買商品的實(shí)際付款金額y(單位:元)與商品原價(jià)x(單位:元)的函數(shù)關(guān)系的圖像如圖所示,則超過500元的部分可以享受的優(yōu)惠是( )

A. 打六折B. 打七折C. 打八折D. 打九折

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:兩個(gè)觀察者從A,B兩地觀測空中C處一個(gè)氣球,分別測得仰角為45°60°,已知A,B兩地相距200m,當(dāng)氣球沿著與AB平行地漂移40秒后到達(dá)C1,在A處測得氣球的仰角為30度.

求:(1)氣球漂移的平均速度(結(jié)果保留3個(gè)有效數(shù)字);

(2)在B處觀測點(diǎn)C1的仰角(精確到度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若以一條線段為對角線作正方形,則稱該正方形為這條線段的對角線正方形.例如,圖①中正方形ABCD即為線段BD對角線正方形.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點(diǎn)P從點(diǎn)C出發(fā),沿折線CA﹣AB5cm/s的速度運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B不重合時(shí),作線段PB對角線正方形,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),線段PB對角線正方形的面積為S(cm2).

(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB對角線正方形”.

(2)當(dāng)線段PB對角線正方形有兩邊同時(shí)落在△ABC的邊上時(shí),求t的值.

(3)當(dāng)點(diǎn)P沿折線CA﹣AB運(yùn)動(dòng)時(shí),求St之間的函數(shù)關(guān)系式.

(4)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)線段PB對角線正方形至少有一個(gè)頂點(diǎn)落在∠A的平分線上時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計(jì)的“作平行四邊形ABCD的邊AB的中點(diǎn)”的尺規(guī)作圖過程.

已知:平行四邊形ABCD

求作:點(diǎn)M,使點(diǎn)M 為邊AB 的中點(diǎn).

作法:如圖,

作射線DA;

以點(diǎn)A 為圓心,BC長為半徑畫弧,

DA的延長線于點(diǎn)E;

連接EC AB于點(diǎn)M

所以點(diǎn)M 就是所求作的點(diǎn).

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形 (保留作圖痕跡);

(2)完成下面的證明.

證明:連接AC,EB

四邊形ABCD 是平行四邊形,

AEBC

AE= ,

四邊形EBCA 是平行四邊形( )(填推理的依據(jù))

AM =MB ( )(填推理的依據(jù))

點(diǎn)M 為所求作的邊AB的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與直線y=x+3x軸負(fù)半軸于點(diǎn)A,交y軸于點(diǎn)C,交x軸正半軸于點(diǎn)B.

(1)求拋物線的解析式;

(2)點(diǎn)P為拋物線上任意一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為x.

①若點(diǎn)P在第二象限,過點(diǎn)PPNx軸于N,交直線AC于點(diǎn)M,求線段PM關(guān)于x的函數(shù)解析式,并求出PM的最大值;

②若點(diǎn)P是拋物線上任意一點(diǎn),連接CP,以CP為邊作正方形CPEF,當(dāng)點(diǎn)E落在拋物線的對稱軸上時(shí),請直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案