【題目】如圖,在△ABC中,點(diǎn)D為BC邊的中點(diǎn),以點(diǎn)D為頂點(diǎn)的∠EDF的兩邊分別與邊AB,AC交于點(diǎn)E,F(xiàn),且∠EDF與∠A互補(bǔ).
(1)如圖1,若AB=AC,且∠A=90°,則線段DE與DF有何數(shù)量關(guān)系?請直接寫出結(jié)論;
(2)如圖2,若AB=AC,那么(1)中的結(jié)論是否還成立?若成立,請給出證明;若不成立,請說明理由;
(3)如圖3,若AB:AC=m:n,探索線段DE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)DE=DF;(2)DE=DF依然成立.見解析;(3)見解析
【解析】
試題分析:(1)首先根據(jù)等腰三角形的性質(zhì)可得∠DAB=∠DAC=∠BAC,AD⊥BC,再證明∠C=∠B=45°,∠ADE=∠FDC,AD=DC可以利用ASA定理證明△AED≌△CFD,進(jìn)而得到DE=DF;
(2)DE=DF依然成立.如圖2,過點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD,則∠EMD=∠FND=90°,由于AB=AC,點(diǎn)D為BC中點(diǎn),根據(jù)三角形的性質(zhì)三線合一得到AD平分∠BAC,于是得到DM=DN,在四邊形AMDN中.,∠DMA=∠DNA=90°,得到∠MAN+∠MDN=180°,又由于∠EDF與∠MAN互補(bǔ),證得∠MDN=∠EDF,推出△DEM≌△DFN(ASA),即可得到結(jié)論;
(3)結(jié)論DE:DF=n:m.如圖3,過點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD同(2)可證∠1=∠2,通過△DEM∽△DFN,得到.由于點(diǎn)E為AC的中點(diǎn),得到S△ABD=S△ADC,列等積式即可得到結(jié)論.
解:(1)DF=DE,
理由:如圖1,連接AD,
∵Rt△ABC是等腰三角形,
∴∠C=∠B=45°,
∴D是斜邊BC的中點(diǎn),
∴∠DAB=∠DAC=∠BAC=45°,AD⊥BC,
∴AD=DC,
∵∠EDF=90°,
∴∠ADF+∠ADE=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠ADF+∠FDC=90°,
∴∠ADE=∠FDC,
在△ADE和△CDF中,,
∴△AED≌△CFD(ASA);
∴DE=DF;
(2)DE=DF依然成立.
如圖2,過點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD,
則∠EMD=∠FND=90°,
∵AB=AC,點(diǎn)D為BC中點(diǎn),
∴AD平分∠BAC,
∴DM=DN,
∵在四邊形AMDN中.,∠DMA=∠DNA=90°,
∴∠MAN+∠MDN=180°,
又∵∠EDF與∠MAN互補(bǔ),
∴∠MDN=∠EDF,
∴∠1=∠2,在△DEM與△DFN中,,
∴△DEM≌△DFN(ASA),
∴DE=DF.
(3)結(jié)論DE:DF=n:m.
如圖3,過點(diǎn)D作DM⊥AB于M,作DN⊥AC于N,連接AD,
同(2)可證∠1=∠2,
又∵∠EMD=∠FND=90°,
∴△DEM∽△DFN,
∴.
∵點(diǎn)D為BC邊的中點(diǎn),
∴S△ABD=S△ADC,
∴,
∴,
又∵,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)是( ).
(1)兩個(gè)無理數(shù)的和必是無理數(shù);
(2)兩個(gè)無理數(shù)的積必是無理數(shù);
(3)無理數(shù)包括正無理數(shù),0,負(fù)無理數(shù);
(4)實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校圖書館去年底有圖書5萬冊,預(yù)計(jì)到明年年底增加到7.2萬冊,則這兩年的年平均增長率為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形 ABCD中,AB=10cm,BC=8cm.點(diǎn)P從A出發(fā),沿A→B→C→D路線運(yùn)動(dòng),到D停止;點(diǎn)Q從D出發(fā),沿 D→C→B→A路線運(yùn)動(dòng),到A停止.若點(diǎn)P、點(diǎn)Q同時(shí)出發(fā),點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒2cm,a秒時(shí)點(diǎn)P、點(diǎn)Q同時(shí)改變速度,點(diǎn)P的速度變?yōu)槊棵?/span>bcm,點(diǎn)Q的速度變?yōu)槊棵?/span>dcm.圖②是點(diǎn)P出發(fā)x秒后△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;圖③是點(diǎn)Q出發(fā)x秒后△AQD的面積S2(cm2)與x(秒)的函數(shù)關(guān)系圖象.
(1)、參照圖象,求b、圖②中c及d的值;
(2)、連接PQ,當(dāng)PQ平分矩形ABCD的面積時(shí),運(yùn)動(dòng)時(shí)間x的值為 ;
(3)、當(dāng)兩點(diǎn)改變速度后,設(shè)點(diǎn)P、Q在運(yùn)動(dòng)線路上相距的路程為y(cm),求y(cm)與運(yùn)動(dòng)時(shí)間x(秒)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(4)、若點(diǎn)P、點(diǎn)Q在運(yùn)動(dòng)路線上相距的路程為25cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩地實(shí)際距離是500 m,畫在圖上的距離是25 cm,若在此圖上量得A、B兩地相距為40 cm,則A、B兩地的實(shí)際距離是( )
A. 800 m B. 8000 m C. 32250 cm D. 3225 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A.當(dāng)AB=BC時(shí),它是菱形
B.當(dāng)AC⊥BD時(shí),它是菱形
C.當(dāng)∠ABC=90°時(shí),它是矩形
D.當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,E,F分別為邊AB,CD的中點(diǎn),連接DE,BF,BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知D是△ABC中一邊BC上的中點(diǎn) ,AC∥BE,連接ED并延長ED交AC于點(diǎn)N,作DM⊥EN于點(diǎn)D交AB于點(diǎn)M.
(1)求證:BE=CN
(2)試判斷BM+CN與MN的大小關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com