如圖1,已知P為正方形ABCD的對(duì)角線AC上一點(diǎn)(不與A、C重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F.
(1)試說(shuō)明:BP=DP;
(2)如圖2,若正方形PECF繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),在旋轉(zhuǎn)過(guò)程中是否總有BP=DP?若是,請(qǐng)給予證明;若不是,請(qǐng)畫圖用反例加以說(shuō)明;
(3)試選取正方形ABCD的兩個(gè)頂點(diǎn),分別與正方形PECF的兩個(gè)頂點(diǎn)連接,使得到的兩條線段在正方形PECF繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)的過(guò)程中長(zhǎng)度始終相等,并證明你的結(jié)論;
(4)旋轉(zhuǎn)的過(guò)程中AP和DF的長(zhǎng)度是否相等,若不等,直接寫出AP:DF=
 
;
(5)若正方形ABCD的邊長(zhǎng)是4,正方形PECF的邊長(zhǎng)是1.把正方形PECF繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)的過(guò)程中,△PBD的面積是否存在最大值、最小值?如果存在,試求出最大值、最小值;如果不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)
分析:(1)利用三角形全等證明PB=PD.
(2)通過(guò)反例說(shuō)明,如點(diǎn)P在正方形的邊上.
(3)由旋轉(zhuǎn)的特點(diǎn)找到DF和BE,再利用三角形全等證明它們相等.
(4)通過(guò)特殊位置如圖1可判斷它們是否相等,也可求出它們的比.
(5)把面積的最值問(wèn)題轉(zhuǎn)化為三角形的高即C點(diǎn)到BD距離大小問(wèn)題.
解答:精英家教網(wǎng)解:(1)∵AC是正方形ABCD的對(duì)角線,
∴∠BAP=∠DAP=45°,BA=DA,又AP為公共邊,
∴△BAP≌△DAP,
∴PB=PD;

(2)不是總有BP=DP.如圖,當(dāng)P點(diǎn)在BC上時(shí),顯然DP>BP,

(3)BE=DF.
證明如下:如圖2,連DF,BE.
精英家教網(wǎng)
∵∠1+∠FCB=∠2+∠FCB=90°,
∴∠1=∠2,
又∵CF=CE,CD=CB,
∴△CDF≌△CBE,(SAS)
∴BE=DF;

(4)旋轉(zhuǎn)的過(guò)程中AP和DF的長(zhǎng)度不相等.它們的比值不變,AP:DF=
2
:1.
理由如下:如圖

過(guò)B點(diǎn)作BM⊥BE,且BM=BE.則△BMA≌△CEM.所以∠AMB=∠BEC,EC=AM.由(3)得BM=BE=DF,
又∵EC=PE,
∴AM=PE,而∠3=∠AMB-135°,∠4=∠BEC-90°-45°,
∴∠3=∠4,
∴四邊形AMEP是平行四邊形,
∴AP=ME,
由(3)得BM=BE=DF,
所以AP=
2
BE=
2
DF.
故填
2
:1.
精英家教網(wǎng)
(5)正方形PECF繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)的過(guò)程中,△PBD的面積存在最大值和最小值,
當(dāng)P點(diǎn)到BD的距離最小時(shí),△PBD的面積最小,而P點(diǎn)到C點(diǎn)的距離不變,
所以CP⊥BD時(shí),△PBD的面積最小,此時(shí)P點(diǎn)在AC上,
S△BDP=
1
2
×4
2
×
2
=4,
當(dāng)P點(diǎn)到BD的距離最大時(shí),△PBD的面積最大,而P點(diǎn)到C點(diǎn)的距離不變.
所以CP⊥BD時(shí),△PBD的面積最大,此時(shí)P點(diǎn)在AC的延長(zhǎng)線上.S△BDP=
1
2
×4
2
×3
2
=12.
點(diǎn)評(píng):熟悉正方形的性質(zhì)和三角形全等的判定定理,熟練掌握旋轉(zhuǎn)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知直線y=2x(即直線l1)和直線y=-
12
x+4(即直線l2),l2與x軸相交于點(diǎn)A.點(diǎn)P從原點(diǎn)O出發(fā),向x軸的正方向作勻速運(yùn)動(dòng),速度為每秒1個(gè)單位,同時(shí)點(diǎn)Q從A點(diǎn)出發(fā),向x軸的負(fù)方向作勻速運(yùn)動(dòng),速度為每秒2個(gè)單位.設(shè)運(yùn)動(dòng)了t秒.
(1)求這時(shí)點(diǎn)P、Q的坐標(biāo)(用t表示).
(2)過(guò)點(diǎn)P、Q分別作x軸的垂線,與l1、l2分別相交于點(diǎn)O1、O2(如圖1).以O(shè)1為圓心、O1P為半徑的圓與以O(shè)2為圓心、O2Q為半徑的圓能否相切?若能精英家教網(wǎng),求出t值;若不能,說(shuō)明理由.(同學(xué)可在圖2中畫草圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=
114
時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無(wú)可能,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮濱縣模擬)如圖1,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線的函數(shù)解析式;
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=2秒時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問(wèn)S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖州)如圖1,已知菱形ABCD的邊長(zhǎng)為2
3
,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(-
3
,3),拋物線y=ax2+b(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移(如圖2),過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<
3

①是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時(shí)針?lè)较蛐D(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時(shí),求t的取值范圍.(寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖l,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)D,頂點(diǎn)的坐標(biāo)為(2,4).直角三角形ABC的頂點(diǎn)A與點(diǎn)O重合,AC,AB分別在x軸,y軸上,且AC=3,AB=4.
(1)直線BC的解析式為
y=
4
3
x+4
y=
4
3
x+4
;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)將直角三角形ABC以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤2),AB邊與該拋物線的交點(diǎn)為Q(如圖2所示).
①設(shè)△CPQ的面積為S,試問(wèn)S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
②直接寫出直線BC與拋物線有唯一的公共點(diǎn)時(shí)t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案