【題目】如圖,已知點D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:AE=DF;
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說明理由.
【答案】
(1)證明:(1)∵DE∥AC,∠ADE=∠DAF,
同理∠DAE=∠FDA,
∵AD=DA,
∴△ADE≌△DAF,
∴AE=DF;
(2)解:若AD平分∠BAC,四邊形AEDF是菱形,
∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∴∠DAF=∠FDA.
∴AF=DF.
∴平行四邊形AEDF為菱形.
【解析】(1)利用AAS推出△ADE≌△DAF,再根據(jù)全等三角形的對應(yīng)邊相等得出AE=DF;(2)先根據(jù)已知中的兩組平行線,可證四邊形DEFA是,再利用AD是角平分線,結(jié)合AE∥DF,易證∠DAF=∠FDA,利用等角對等邊,可得AE=DF,從而可證AEDF實菱形.
【考點精析】本題主要考查了菱形的判定方法的相關(guān)知識點,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直角三角形AOB的頂點A、B分別落在坐標軸上.O為原點,點A的坐標為(6,0),點B的坐標為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒 個單位的速度運動.當一個動點到達終點時,另一個動點也隨之停止運動,設(shè)動點M、N運動的時間為t秒(t>0).
(1)當t=3秒時,直接寫出點N的坐標;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當t為何值時,△MNA是一個等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一種某小區(qū)的兩幢10層住宅樓間的距離為AC=30m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3m.假設(shè)某一時刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h(不必指出α的取值范圍);
(2)當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程x2﹣3x+m=0的兩實數(shù)根是( )
A.x1=1,x2=﹣1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過點B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點A(﹣1,﹣2),則不等式4x+2<kx+b<0的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,△COD關(guān)于CD的對稱圖形為△CED.
(1)求證:四邊形OCED是菱形;
(2)連接AE,若AB=6cm,BC= cm.
①求sin∠EAD的值;
②若點P為線段AE上一動點(不與點A重合),連接OP,一動點Q從點O出發(fā),以1cm/s的速度沿線段OP勻速運動到點P,再以1.5cm/s的速度沿線段PA勻速運動到點A,到達點A后停止運動,當點Q沿上述路線運動到點A所需要的時間最短時,求AP的長和點Q走完全程所需的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com