【題目】閱讀下面材料: 如圖1,在平面直角坐標(biāo)系xOy中,直線(xiàn)y1=ax+b與雙曲線(xiàn)y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2 , 即通過(guò)觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)將(2)、(3)、(4)補(bǔ)充完整:
(1)①將不等式按條件進(jìn)行轉(zhuǎn)化: 當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1< ;
②構(gòu)造函數(shù),畫(huà)出圖象
設(shè)y3=x2+4x﹣1,y4= ,在同一坐標(biāo)系中分別畫(huà)出這兩個(gè)函數(shù)的圖象.
雙曲線(xiàn)y4= 如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫(huà)出拋物線(xiàn)y3=x2+4x﹣1;(不用列表)
(2)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo) 觀察所畫(huà)兩個(gè)函數(shù)的圖象,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿(mǎn)足y3=y4的所有x的值為
(3)借助圖象,寫(xiě)出解集 結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
【答案】
(1)解:
(2)±1和﹣4
(3)x>1或﹣4<x<﹣1
【解析】解:(2)兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo)是±1和﹣4. 則滿(mǎn)足y3=y4的所有x的值為±1和﹣4.
故答案是:±1和﹣4;(3)不等式x3+4x2﹣x﹣4>0即當(dāng)x>0時(shí),x2+4x﹣1> ,此時(shí)x的范圍是:x>1;
當(dāng)x<0時(shí),x2+4x﹣1< ,則﹣4<x<﹣1.
故答案是:x>1或﹣4<x<﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(2,3),B(1,1),C(4,2)
(1)連接A、B、C三點(diǎn),請(qǐng)?jiān)谌鐖D中作出△ABC關(guān)于x軸對(duì)稱(chēng)的圖形△A’B’C’并直接寫(xiě)出各對(duì)稱(chēng)點(diǎn)的坐標(biāo);(2)求△ABC的面積;(3)若M(x,y)是△ABC內(nèi)部任意一點(diǎn),請(qǐng)直接寫(xiě)出點(diǎn)M在△A’B’C’內(nèi)部的對(duì)應(yīng)點(diǎn)M1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有三條射線(xiàn),OE平分∠AOD,OC平分∠BOD.
(1)若∠AOB=90°,求∠EOC的度數(shù);
(2)若∠AOB=α,求∠EOC的度數(shù);
(3)如果將題中“平分”的條件改為∠EOA=∠AOD,∠DOC=∠DOB,∠AOD=50°,且∠AOB=90°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料: 在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
小敏的作法如下:
如圖,
①鏈接op,做線(xiàn)段op的垂直平分線(xiàn)MN,交OP于點(diǎn)C
②以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A、B兩點(diǎn)
③作直線(xiàn)PA、PB所以直線(xiàn)PA,PB就是所求的切線(xiàn)
老師認(rèn)為小敏的作法正確.
請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線(xiàn)PA,PB都是⊙O的切線(xiàn),其依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界讀書(shū)日,新華書(shū)店矩形購(gòu)書(shū)優(yōu)惠活動(dòng):①一次性購(gòu)書(shū)不超過(guò)100元,不享受打折優(yōu)惠;②一次性購(gòu)書(shū)超過(guò)100元但不超過(guò)200元一律八折;③一次性購(gòu)書(shū)200元以上一律打六折.小麗在這次活動(dòng)中,兩次購(gòu)書(shū)總共付款190.4元,第二次購(gòu)書(shū)原價(jià)是第一次購(gòu)書(shū)原價(jià)的3倍,那么小麗這兩次購(gòu)書(shū)原價(jià)的總和是_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長(zhǎng);若點(diǎn)P與圓心O不重合,作射線(xiàn)OP交⊙O于點(diǎn)A,則SP為線(xiàn)段AP的長(zhǎng)度. 圖1為點(diǎn)P在⊙O外的情形示意圖.
(1)若點(diǎn)B(1,0),C(1,1), ,則SB=;SC=;SD=;
(2)若直線(xiàn)y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
(3)已知點(diǎn)P,Q在x軸上,R為線(xiàn)段PQ上任意一點(diǎn).若線(xiàn)段PQ上存在一點(diǎn)T,滿(mǎn)足T在⊙O內(nèi)且ST≥SR , 直接寫(xiě)出滿(mǎn)足條件的線(xiàn)段PQ長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點(diǎn)D、E,過(guò)點(diǎn)D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線(xiàn);
(2)若等邊三角形ABC的邊長(zhǎng)為4,求DF的長(zhǎng);
(3)寫(xiě)出求圖中陰影部分的面積的思路.(不求計(jì)算結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在讀書(shū)月活動(dòng)中,某校號(hào)召全體師生積極捐書(shū),為了解所捐書(shū)籍的種類(lèi),圖書(shū)管理員對(duì)部分書(shū)籍進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的統(tǒng)計(jì)圖表.請(qǐng)你根據(jù)統(tǒng)計(jì)圖表所提供的信息回答下面問(wèn)題:
某校師生捐書(shū)種類(lèi)情況統(tǒng)計(jì)表
種類(lèi) | 頻數(shù) | 百分比 |
A.科普類(lèi) | 12 | n |
B.文學(xué)類(lèi) | 14 | 35% |
C.藝術(shù)類(lèi) | m | 20% |
D.其它類(lèi) | 6 | 15% |
(1)統(tǒng)計(jì)表中的m= ,n= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)本次活動(dòng)師生共捐書(shū)2000本,請(qǐng)估計(jì)有多少本科普類(lèi)圖書(shū)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com