【題目】已知:在平面直角坐標(biāo)系中點(diǎn)、是某函數(shù)圖象上任意兩點(diǎn).將函數(shù)圖象中的部分沿直線作軸對(duì)稱,的部分沿直線作軸對(duì)稱,與原函數(shù)圖象中的部分組成了個(gè)新函數(shù)的圖象,稱這個(gè)新函數(shù)為原函數(shù)關(guān)于點(diǎn)、的“雙對(duì)稱函數(shù)”.
例如:如圖①,點(diǎn)、是一次函數(shù)圖象上的兩個(gè)點(diǎn),則函數(shù)關(guān)于點(diǎn)、的“雙對(duì)稱函數(shù)”的圖象如圖②所示.
圖① 圖②
(1)點(diǎn)、是函數(shù)圖象上的兩點(diǎn),關(guān)于點(diǎn)、的“雙對(duì)稱函數(shù)”的圖象記作.若是中心對(duì)稱圖形,直接寫出的值.
(2)點(diǎn)、是二次函數(shù)圖象上的兩點(diǎn),該二次函數(shù)關(guān)于點(diǎn)、的“雙對(duì)稱函數(shù)”記作.
①求、兩點(diǎn)的坐標(biāo)(用含的代數(shù)式表示).
②當(dāng)時(shí),求出函數(shù)的解析式;
③若時(shí),函數(shù)的最小值為,求時(shí),的取值范圍.
【答案】(1);(2)①,;②;③或.
【解析】
(1)根據(jù)圖像關(guān)于原點(diǎn)對(duì)稱可得,點(diǎn)A、B兩點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱,可得t的值;
(2)①直接將P、Q橫坐標(biāo)代入拋物線,可求得點(diǎn)P、Q的縱坐標(biāo);
②根據(jù)“雙對(duì)稱函數(shù)”的定義,函數(shù)在點(diǎn)P、Q處翻折,分3段表示函數(shù)解析式即可;
③存在3種情況,一種是t≤-1時(shí),一種是-1<t<0時(shí),還有一種是t≥0時(shí),分別討論最小值可求得取值范圍.
(1)∵A、B在反比例函數(shù)
∴A(t,),B(t+3,)
因?yàn)楹瘮?shù)關(guān)于原點(diǎn)對(duì)稱,則A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱
∴t+t+3=0
解得:.
(2)①∵
∴∵
∵
∴
∴,.
②當(dāng)時(shí),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
原二次函數(shù)的解析式為.
當(dāng)x<時(shí),函數(shù)沿y=翻折
得到:
當(dāng)時(shí),函數(shù)不變,即為:
當(dāng)時(shí),函數(shù)沿y=翻折
得到:
故可求.
③當(dāng)t<0時(shí)
同理,可求得
其中,t≤-1時(shí),圖形如下
則點(diǎn)Q始終是函數(shù)在-1≤x≤1的最低點(diǎn)
∵,
∴
解得:≤t≤
∴≤t≤
當(dāng)-1<t<0時(shí),則在x=-1時(shí)取得最小值
代入得:y=
∴-2≤≤-1
解得:≤t≤
∴≤t≤
當(dāng)t≥0時(shí),同理,直接解不等式:
-2≤≤-1
解得:
∴綜上得: 或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
當(dāng)均為正整數(shù)時(shí),若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,點(diǎn)E為BC的中點(diǎn),以CE為弦作圓,設(shè)該圓與四邊形ABCD的一邊的交點(diǎn)為P,若∠CPE=30°,則EP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)C是半徑為1的半圓弧的一個(gè)三等分點(diǎn),分別以弦、為直徑向外側(cè)作2個(gè)半圓,點(diǎn)D、E也分別是2半圓弧的三等分點(diǎn),再分別以弦、、、為直徑向外側(cè)作4個(gè)半圓.則圖中陰影部分(4個(gè)新月牙形)的面積和是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形,點(diǎn)是上的一點(diǎn),連結(jié),,平分,交于點(diǎn),且點(diǎn)是的中點(diǎn),連結(jié),已知,,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有4張除了正面圖案不同,其余都相同的卡片,將這4張卡片背面朝上混勻.
(1)若淇淇從中抽一張卡片,求抽到的卡片上所示的立體圖形的主視圖為矩形的概率;
(2)若嘉嘉先從中隨機(jī)抽出一張后放回并混勻,淇淇再隨機(jī)抽出一張,請(qǐng)用列表法或畫樹狀圖求兩人抽到的卡片上所示的立體圖形的主視圖都是矩形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達(dá)圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示
(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),連接、,已知點(diǎn)A、C的坐標(biāo)為、.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是線段下方拋物線上的一動(dòng)點(diǎn),如果在x軸上存在點(diǎn)Q,使得以點(diǎn)B、C、P、Q為頂點(diǎn)的四邊形為平行四邊形,求點(diǎn)Q的坐標(biāo);
(3)如圖2,若點(diǎn)M是內(nèi)一動(dòng)點(diǎn),且滿足,過點(diǎn)M作,垂足為N,設(shè)的內(nèi)心為I,試求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中學(xué)校餐廳為了解學(xué)生對(duì)早餐的要求,隨即抽樣調(diào)查了該校的部分學(xué)生,并根據(jù)其中兩個(gè)單選問題的調(diào)查結(jié)果,繪制了如下尚不完整的統(tǒng)計(jì)圖表.
學(xué)生能接受的早餐價(jià)格統(tǒng)計(jì)表
價(jià)格分組(單位:元) | 頻數(shù) | 頻率 |
0<x≤2 | 60 | 0.15 |
2<x≤4 | 180 | c |
4<x≤6 | 92 | 0.23 |
6<x≤8 | a | 0.12 |
x>8 | 20 | 0.05 |
合計(jì) | b | 1 |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計(jì)表中,a= ,b= ,c= .
(2)扇形統(tǒng)計(jì)圖中,m的值為 ,“甜”所對(duì)應(yīng)的圓心角的度數(shù)是 .
(3)該餐廳計(jì)劃每天提供早餐2000份,其中咸味大約準(zhǔn)備多少份較好?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com