【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當(dāng)點D在邊BC的延長線上且其他條件不變時,結(jié)論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)點D在邊BC的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關(guān)系
【答案】(1)見解析;
(2)見解析;
(3)見解析.
【解析】
(1)根據(jù)已知得出AF=AD,AB=BC=AC,∠BAC=∠DAF=60°,求出∠BAD=CAF,由SAS證△BAD≌△CAF,推出CF=BD即可.
(2)求出∠BAD=∠CAF,根據(jù)SAS證△BAD≌△CAF,推出BD=CF即可.
(3)畫出圖形后,根據(jù)SAS證△BAD≌△CAF,推出CF=BD即可:
解:(1)證明:∵四邊形AFED是菱形,∴AF=AD.
∵△ABC是等邊三角形,∴AB=AC=BC,∠BAC=60°=∠DAF.
∴∠BAC-∠DAC=∠DAF-∠DAC,即∠BAD=∠CAF.
∵在△BAD和△CAF中, AB=AC,∠BAD=∠CAF,AD="AF" ,
∴△BAD≌△CAF(SAS).∴CF=BD.
∴CF+CD=BD+CD=BC=AC.
即①BD=CF,②AC=CF+CD.
(2)AC=CF+CD不成立,AC、CF、CD之間存在的數(shù)量關(guān)系是AC=CF-CD.理由如下:
由(1)知:AB=AC=BC,AD=AF,∠BAC=∠DAF=60°,
∴∠BAC+∠DAC=∠DAF+∠DAC,即∠BAD=∠CAF.
∵在△BAD和△CAF中,AC=AB,∠BAD=∠CAF ,AD=AF,
∴△BAD≌△CAF(SAS).∴BD=CF.
∴CF-CD=BD-CD=BC=AC,即AC=CF-CD.
補全圖形如下,AC、CF、CD之間的數(shù)量關(guān)系為AC=CD-CF.
(3)∵∠BAC=∠DAF=60°,∴∠DAB=∠CAF,
∵在△BAD和△CAF中, AB=AC,∠DAB=∠CAF, AD=AF,
∴△BAD≌△CAF(SAS).∴CF=BD.∴CD-CF=CD-BD=BC=AC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達(dá)A地時,甲車已在C地休息了_____小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,AD=4,點E從D向C以每秒1個單位的速度運動,以AE為一邊在AE的左上方作正方形AEFG,同時垂直于CD的直線MN也從C向D以每秒2個單位的速度運動,當(dāng)點F落在直線MN上,設(shè)運動的時間為t,則t的值為( )
A.1B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《北京晚報》介紹,自2009年故宮博物院年度接待觀眾首次突破1000萬人次之后,每年接待量持續(xù)增長,到2018年突破1700萬人次,成為世界上接待量最多的博物館.特別是隨著《我在故宮修文物》、《上新了,故宮》等一批電視文博節(jié)目的播出,社會上再次掀起故宮熱.于是故宮文創(chuàng)營銷人員為開發(fā)針對不同年齡群體的文創(chuàng)產(chǎn)品,隨機調(diào)查了部分參觀故宮的觀眾的年齡,整理并繪制了如下統(tǒng)計圖表.
2018年參觀故宮觀眾年齡頻數(shù)分布表
年齡x/歲 | 頻數(shù)/人數(shù) | 頻率 |
20≤x<30 | 80 | b |
30≤x<40 | a | 0.240 |
40≤x<50 | 35 | 0.175 |
50≤x<60 | 37 | c |
合計 | 200 | 1.000 |
(1)求表中a,b,c的值;
(2)補全頻數(shù)分布直方圖;
(3)從數(shù)據(jù)上看,年輕觀眾(20≤x<40)已經(jīng)成為參觀故宮的主要群體.如果今年參觀故宮人數(shù)達(dá)到2000萬人次,那么其中年輕觀眾預(yù)計約有 萬人次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(x-1)2+n,當(dāng)x=3時,y=2.
(1)求拋物線的解析式,并在平面直角坐標(biāo)系中畫出該函數(shù)的圖象;
(2)過點D(0,2)作x軸的平行線交拋物線于E,F兩點,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了拆除震后危樓,抗震減災(zāi)工作組對所剩部分危樓樓房進(jìn)行摸排測量.在危樓樓角B點處,測得危樓樓頂A的仰角為60°;沿樓角B點的正前方前進(jìn)8米到達(dá)點C,在離C點2米高的D處測得危樓樓頂A的仰角為30°.請根據(jù)以上測量數(shù)據(jù),求出樓頂A離地面的高度.(≈1.7,精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,拋物線y=﹣x2+bx+c經(jīng)過原點,與x軸的另一個交點為A(﹣6,0),點C是拋物線的頂點,且⊙C與y軸相切,點P為⊙C上一動點.若點D為PA的中點,連結(jié)OD,則OD的最大值是( 。
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).
(1)求直線與雙曲線的解析式.
(2)點P在x軸上,如果S△ABP=3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,直線與軸,軸分別交于點,,當(dāng)軸上的動點到直線的距離與到點的距離之和最小時,則點的坐標(biāo)是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com