【題目】矩形一個(gè)角的平分線分矩形一邊為2cm和3cm兩部分,則這個(gè)矩形的面積為( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
【答案】D
【解析】
根據(jù)矩形性質(zhì)得出AB=CD,AD=BC,AD∥BC,由平行線的性質(zhì),以及角平分線的定義,即可證得∠ABE=∠AEB,利用等邊對(duì)等角可以證得AB=AE,然后分AE=2cm,DE=3cm和AE=3cm,DE=2cm兩種情況即可求得矩形的邊長(zhǎng),從而求解.
解:∵四邊形ABCD是矩形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AB=AE,
當(dāng)AE=2cm,DE=3cm時(shí),AD=BC=5cm,AB=CD=AE=2cm.
∴矩形ABCD的面積是:2×5=10cm2;
當(dāng)AE=3cm,DE=2cm時(shí),AD=BC=5cm,AB=CD=AE=3cm,
∴矩形ABCD的面積是:5×3=15cm2.
故矩形的面積是:10cm2或15cm2.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形, AB=AC,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF.
(1)請(qǐng)說明:DE=DF;
(2)請(qǐng)說明:BE2+CF2=EF2;
(3)若BE=6,CF=8,求△DEF的面積(直接寫結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的對(duì)角線相交于點(diǎn)O,∠COE=45°,過點(diǎn)C作CE⊥BD于點(diǎn)E,
(1)如圖1,若CB=1,求△CED的面積;
(2)如圖2,過點(diǎn)O作OF⊥DB于點(diǎn)O,OF=OD,連接FC,點(diǎn)G是FC中點(diǎn),連接GE,求證:DC=2GE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先仔細(xì)閱讀材料,再嘗試解決問題:我們?cè)谇蟠鷶?shù)式的最大或最小值時(shí),通過利用公式對(duì)式子作如下變形:
,
因?yàn)?/span>,
所以,
因此有最小值2,
所以,當(dāng)時(shí),,的最小值為2.
同理,可以求出的最大值為7.
通過上面閱讀,解決下列問題:
(1)填空:代數(shù)式的最小值為______________;代數(shù)式的最大值為______________;
(2)求代數(shù)式的最大或最小值,并寫出對(duì)應(yīng)的的取值;
(3)求代數(shù)式的最大或最小值,并寫出對(duì)應(yīng)的、的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤(rùn)=售價(jià)﹣制造成本).
(1)寫出每月的利潤(rùn)w(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬(wàn)元的利潤(rùn)?
(3)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是ΔABC內(nèi)一點(diǎn),連接OB、OC,并將AB、OB、OC、AC的中點(diǎn)、、、依次連結(jié),得到四邊形.
(1)求證:四邊形是平行四邊形;
(2)若為的中點(diǎn),OM=5,∠OBC與∠OCB互余,求DG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)先化簡(jiǎn),然后從-2≤x≤2的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時(shí)間(單位:)之間的關(guān)系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為;②足球飛行路線的對(duì)稱軸是直線;③足球被踢出時(shí)落地;④足球被踢出時(shí),距離地面的高度是.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com