【題目】矩形一個(gè)角的平分線分矩形一邊為2cm3cm兩部分,則這個(gè)矩形的面積為(

A.10cm2B.15cm2C.12cm2D.10cm215cm2

【答案】D

【解析】

根據(jù)矩形性質(zhì)得出AB=CD,AD=BCADBC,由平行線的性質(zhì),以及角平分線的定義,即可證得∠ABE=AEB,利用等邊對(duì)等角可以證得AB=AE,然后分AE=2cmDE=3cmAE=3cm,DE=2cm兩種情況即可求得矩形的邊長(zhǎng),從而求解.

解:∵四邊形ABCD是矩形,

AB=CD,AD=BC,ADBC
∴∠AEB=CBE,
BE平分∠ABC
∴∠ABE=CBE,
∴∠AEB=ABE,
AB=AE,

當(dāng)AE=2cm,DE=3cm時(shí),AD=BC=5cmAB=CD=AE=2cm
∴矩形ABCD的面積是:2×5=10cm2;
當(dāng)AE=3cmDE=2cm時(shí),AD=BC=5cm,AB=CD=AE=3cm,
∴矩形ABCD的面積是:5×3=15cm2
故矩形的面積是:10cm215cm2
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰直角三角形, AB=AC,D是斜邊BC的中點(diǎn),EF分別是AB、AC邊上的點(diǎn),且DEDF

(1)請(qǐng)說明:DE=DF;

(2)請(qǐng)說明:BE2+CF2=EF2

(3)若BE=6,CF=8,求△DEF的面積(直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD的對(duì)角線相交于點(diǎn)O,∠COE45°,過點(diǎn)CCEBD于點(diǎn)E

1)如圖1,若CB1,求CED的面積;

2)如圖2,過點(diǎn)OOFDB于點(diǎn)O,OFOD,連接FC,點(diǎn)GFC中點(diǎn),連接GE,求證:DC2GE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先仔細(xì)閱讀材料,再嘗試解決問題:我們?cè)谇蟠鷶?shù)式的最大或最小值時(shí),通過利用公式對(duì)式子作如下變形:

因?yàn)?/span>,

所以,

因此有最小值2,

所以,當(dāng)時(shí),,的最小值為2.

同理,可以求出的最大值為7.

通過上面閱讀,解決下列問題:

1)填空:代數(shù)式的最小值為______________;代數(shù)式的最大值為______________;

2)求代數(shù)式的最大或最小值,并寫出對(duì)應(yīng)的的取值;

3)求代數(shù)式的最大或最小值,并寫出對(duì)應(yīng)的、的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤(rùn)=售價(jià)﹣制造成本)

(1)寫出每月的利潤(rùn)w(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬(wàn)元的利潤(rùn)?

(3)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是ΔABC內(nèi)一點(diǎn),連接OBOC,并將ABOB、OCAC的中點(diǎn)、、、依次連結(jié),得到四邊形

1)求證:四邊形是平行四邊形;

2)若的中點(diǎn),OM=5,∠OBC與∠OCB互余,求DG的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)先化簡(jiǎn),然后從-2≤x≤2的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時(shí)間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為足球飛行路線的對(duì)稱軸是直線;足球被踢出時(shí)落地;足球被踢出時(shí),距離地面的高度是.

其中正確結(jié)論的個(gè)數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案