【題目】如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中 的長是cm(計算結果保留π).

【答案】10π
【解析】解:∵圓錐的高h為12cm,OA=13cm,
∴圓錐的底面半徑為 =5cm,
∴圓錐的底面周長為10πcm,
∴扇形AOC中 的長是10πcm,
所以答案是:10π.
【考點精析】利用弧長計算公式和圓錐的相關計算對題目進行判斷即可得到答案,需要熟知若設⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;圓錐側面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側面積S=πrl;V圓錐=1/3πR2h.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形ABCD在平面直角坐標系的位置如圖所示,A(1,1),B(6,1),AC=4 ,點P是對角線OAC上的一個動點,E(0,2),當△EPD周長最小時,點P的坐標為(
A.(2,2)
B.(2,
C.(
D.(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,,動點P從點A開始沿邊AC向點C以每秒1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P,交AB于點D,連接PQ,點PQ分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設運動時間為t

直接用含t的代數(shù)式分別表示:______,______

是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由.

如圖2,在整個運動過程中,求出線段PQ中點M所經過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】公安人員在破案時常常根據案發(fā)現(xiàn)場作案人員留下的腳印推斷犯人的身高,如果用a表示腳印長度,b表示身高,關系類似滿足于:

(1)某人腳印長度為24.5cm,則他的身高約為多少?(精確到1cm)

(2)在某次案件中,抓獲了兩可疑人員,甲的身高為1.83m,乙的身高為1.89m,在現(xiàn)場測量的腳印為26.3cm,請你幫助偵察一下。哪個可疑人員的可能性更大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知A(2,2)、B(4,0).若在坐標軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了經濟發(fā)展的需要,某市2014年投入科研經費500萬元,2016年投入科研經費720萬元.
(1)求2014至2016年該市投入科研經費的年平均增長率;
(2)根據目前經濟發(fā)展的實際情況,該市計劃2017年投入的科研經費比2016年有所增加,但年增長率不超過15%,假定該市計劃2017年投入的科研經費為a萬元,請求出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:角平分線和中線重合的三角形是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,圖1中面積為1 的正方形有9個,圖2中面積為1的正方形有14個,,按此規(guī)律,圖9中面積為1的正方形的個數(shù)為(

……

A. 49 B. 45 C. 44 D. 40

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PE⊥BC于點E,過點E作EF∥AC,交AB于點F.設PC=x,
PE=y.

(1)求y與x的函數(shù)關系式;
(2)是否存在點P使△PEF是Rt△?若存在,求此時的x的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案