【題目】一批單價為20元的商品,若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?

【答案】
(1)

解:設(shè)y與x滿足的函數(shù)關(guān)系式為:y=kx+b.

由題意可得:

解得

故y與x的函數(shù)關(guān)系式為:y=﹣3x+108.


(2)

解:每天獲得的利潤為:P=(﹣3x+108)(x﹣20)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192.

故當(dāng)銷售價定為28元時,每天獲得的利潤最大.


【解析】(1)設(shè)y與x滿足的函數(shù)關(guān)系式為:y=kx+b,由題意可列出k和b的二元一次方程組,解出k和b的值即可;(2)根據(jù)題意:每天獲得的利潤為:P=(﹣3x+108)(x﹣20),轉(zhuǎn)換為P=﹣3(x﹣28)2+192,于是求出每天獲得的利潤P最大時的銷售價格.
【考點精析】本題主要考查了一次函數(shù)的概念和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識點,需要掌握一般地,如果y=kx+b(k,b是常數(shù),k不等于0),那么y叫做x的一次函數(shù);一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=2,ED=4,

(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中, 厘米, 厘米,點DAB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運(yùn)動,同時,點Q在線段CA上由C點向A點運(yùn)動.當(dāng)點Q的運(yùn)動速度為_______ 厘米/秒時,能夠在某一時刻使BPDCQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-3x與雙曲線y在第四象限內(nèi)的部分相交于點Aa,-6),將這條直線向

上平移后與該雙曲線交于點M,且△AOM的面積為3.

(1)求k的值;

(2)求平移后得到的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘海輪位于燈塔P的北偏東60°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的東南方向上的B處.這時,海輪所在的B處距離燈塔P有多遠(yuǎn)?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,頂點A,C分別在坐標(biāo)軸上,頂點B的坐標(biāo)(4,2),過點D(0,3)和E(6,0)的直線分別于AB,BC交于點M,N.

(1)求直線DE的解析式和點M的坐標(biāo);
(2)若反比例函數(shù)y= (x>0)的圖象經(jīng)過點M,求該反比函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABCADE中,∠BAC=DAE=90°,AB=ACAD=AE,點CD,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADCBD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC與△DEF分別是等邊三角形和等腰直角三角形,AC與DF交于點G,AD與FC分別是△ABC和△DEF的高,線段BC,DE在同一條直線上,則下列說法不正確的是(

A.△AGD∽△CGF
B.△AGD∽△DGC
C. =3
D. =

查看答案和解析>>

同步練習(xí)冊答案