2.不論m取任何實數(shù),拋物線y=(x-m)2+m-1(x為自變量)的頂點都在一條直線上,則這條直線的函數(shù)解析式是y=x-1.

分析 根據(jù)拋物線的頂點式可得頂點坐標,即$\left\{\begin{array}{l}{x=m}&{①}\\{y=m-1}&{②}\end{array}\right.$,①-②得:x-y=1,可知答案.

解答 解:∵拋物線y=(x-m)2+m-1的頂點坐標為(m,m-1),
即$\left\{\begin{array}{l}{x=m}&{①}\\{y=m-1}&{②}\end{array}\right.$,
①-②,得:x-y=1,即y=x-1,
故答案為:y=x-1.

點評 此題考查了待定系數(shù)法求二次函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.昌平區(qū)南環(huán)路大橋位于南環(huán)路東段,該橋設(shè)計新穎獨特,懸索和全鋼結(jié)構(gòu)橋體輕盈、通透,恰好與東沙河濕地生態(tài)恢復(fù)工程及龍山、蟒山等人文、自然景觀相呼應(yīng);首創(chuàng)的兩主塔間和無上橫梁的設(shè)計,使大橋整體有一種開放、升騰的氣勢,預(yù)示昌平區(qū)社會經(jīng)濟的蓬勃發(fā)展,絢麗的夜景照明設(shè)計更是光耀水天,使得南環(huán)路大橋不僅是昌平新城的交通樞紐,更是一座名副其實的景觀大橋,今后也將成為北京的一個新的旅游景點,成為昌平地區(qū)標志性建筑.
某中學(xué)九年級數(shù)學(xué)興趣小組進行了測量它高度的社會實踐活動.如圖,他們在B點測得頂端D的仰角∠DBA=30°,向前走了50米到達C點后,在C點測得頂端D的仰角∠DCA=45°,點A、C、B在同一直線上.求南環(huán)大橋的高度AD.(結(jié)果保留整數(shù),參考數(shù)據(jù):$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{6}$≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,直線AB、CD相交于點O,OE⊥AB于點O,OF平分∠AOE,∠1=15°30′,則下列結(jié)論中不正確的是( 。
A.∠AOD與∠1互為補角B.∠1的余角等于74°30′
C.∠2=45°D.∠DOF=135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.在一次中華好詩詞比賽中,某參賽小組的得分如下:95  85  95  85  80  95  90這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別為( 。
A.95  90B.95  85C.90  95D.80   85

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.已知x=y,字母m可以取任意有理數(shù),下列等式不一定成立的是( 。
A.x+m=y+mB.x-m=y-mC.xm=ymD.x+m=x-m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,三條公路OA,OB,AB兩兩相交于點O,點A和點B,現(xiàn)在建一個工廠P,使得工廠P到三條公路的距離相等
(1)若P在△AOB的內(nèi)部,你能確定工廠P的位置嗎?說說你的想法;
(2)若P為△AOB所在平面內(nèi)一點,工廠P的位置又是怎樣的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知a+b=-3,ab=-1,求下列各式的值
(1)(a-b)2
(2)$\frac{a}$+$\frac{a}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.如圖,等腰直角△ABC的直角邊長與正方形MNPQ的邊長均為10cm,AC與MN在同一直線上,開始時A點與M點重合,讓向右運動,最后A點與N點重合,則重疊部分面積ycm2與MA長度xcm之間關(guān)系式y(tǒng)=$\frac{1}{2}$x2;自變量的取值范圍是0<x≤10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=6,點M在AB上,且AM=4,點D是AC邊上的一個動點(不與A、C重合),設(shè)CD的長為x,△ADM的面積y
(1)寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)寫出函數(shù)的定義域.

查看答案和解析>>

同步練習(xí)冊答案