精英家教網 > 初中數學 > 題目詳情

如果△ABC的三個內角∠A、∠B、∠C滿足∠A=∠B+∠C,則此三角形必是


  1. A.
    銳角三角形
  2. B.
    直角三角形
  3. C.
    鈍角三角形
  4. D.
    都有可能
B
∵ ∠A=∠B+∠C∠A=180°-(∠B+∠C)∴ ∠B+∠C=180°-(∠B+∠C) 2(∠B+∠C)=180° ∠B+∠C=90°∴∠A=90°則此三角形必是直角三角形
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(1)解方程:
2
x
-
2
x(x+1)
=1

(2)已知△ABC(如圖1),請用直尺(沒有刻度)和圓規(guī),作一個平行四邊形,使它的三個頂點恰好是△ABC的三個頂點(只需作一個,不必寫作法,但要保留作圖痕跡)
精英家教網
(3)根據題意,完成下列填空:
如圖2,L1與L2是同一平面內的兩條相交直線,它們有1個交點,如果在這個平面內,再畫第3直線L3,那么這3條直線最多可有
 
個交點;如果在這個平面內再畫第4條直線L4,那么這4條直線最多可有
 
個交點.由此我們可以猜想:在同一平面內,6條直線最多可有
 
個交點,n( n為大于1的整數)條直線最多可有
 
個交點(用含n的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•上城區(qū)二模)如圖①,P為△ABC內一點,連接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一個三角形與△ABC相似,那么就稱P為△ABC的自相似點.已知△ABC中,∠A<∠B<∠C.
(1)利用直尺和圓規(guī),在圖②中作出△ABC的自相似點P(不寫作法,但需保留作圖痕跡);
(2)若△ABC的三內角平分線的交點P是該三角形的自相似點,求該三角形三個內角的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知在直角坐標平面內有雙曲線y=
6
3
x
,另有△ABC,其中點A、B、C的坐標分別是A(-2
2
,
3
6
2
),B(-2
2
,0),C(0,
3
6
2
).
(1)如果將△ABC沿x軸翻折后得到對應的△A1B1C1 (其中點A、B、C的對應點分別是點A1、B1、C1),問:△A1B1C1的三個頂點中,有無在雙曲線y=
6
3
x
上的點?若有,寫出這個點的坐標.
(2)如果將△ABC沿x軸正方向平移a個單位后,使△ABC的一個頂點落在雙曲線y=
6
3
x
上,請直接寫出a的值.
(3)如果△ABC關于原點O的對稱的三角形△A2B2C2(其中點A、B、C的對應點分別是點A2、B2、C2),請寫出經過點A、A2的直線所表示的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

(1)解方程:數學公式
(2)已知△ABC(如圖1),請用直尺(沒有刻度)和圓規(guī),作一個平行四邊形,使它的三個頂點恰好是△ABC的三個頂點(只需作一個,不必寫作法,但要保留作圖痕跡)

(3)根據題意,完成下列填空:
如圖2,L1與L2是同一平面內的兩條相交直線,它們有1個交點,如果在這個平面內,再畫第3直線L3,那么這3條直線最多可有______個交點;如果在這個平面內再畫第4條直線L4,那么這4條直線最多可有______個交點.由此我們可以猜想:在同一平面內,6條直線最多可有______個交點,n( n為大于1的整數)條直線最多可有______個交點(用含n的代數式表示)

查看答案和解析>>

科目:初中數學 來源:2001年江蘇省無錫市中考數學試卷(解析版) 題型:解答題

(1)解方程:
(2)已知△ABC(如圖1),請用直尺(沒有刻度)和圓規(guī),作一個平行四邊形,使它的三個頂點恰好是△ABC的三個頂點(只需作一個,不必寫作法,但要保留作圖痕跡)

(3)根據題意,完成下列填空:
如圖2,L1與L2是同一平面內的兩條相交直線,它們有1個交點,如果在這個平面內,再畫第3直線L3,那么這3條直線最多可有______個交點;如果在這個平面內再畫第4條直線L4,那么這4條直線最多可有______個交點.由此我們可以猜想:在同一平面內,6條直線最多可有______個交點,n( n為大于1的整數)條直線最多可有______個交點(用含n的代數式表示)

查看答案和解析>>

同步練習冊答案