如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.                                                 

(1)求BD的長;                                                                             

(2)若△DCN的面積為2,求四邊形ABNM的面積.                                   

                                                               


【考點(diǎn)】相似三角形的判定與性質(zhì);平行四邊形的性質(zhì).                               

【專題】幾何綜合題.                                                                       

【分析】(1)由四邊形ABCD為平行四邊形,得到對邊平行且相等,且對角線互相平分,根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到兩對角相等,進(jìn)而確定出三角形MND與三角形CNB相似,由相似得比例,得到DN:BN=1:2,設(shè)OB=OD=x,表示出BN與DN,求出x的值,即可確定出BD的長;                                            

(2)由相似三角形相似比為1:2,得到CN=2MN,BN=2DN.已知△DCN的面積,則由線段之比,得到△MND與△CNB的面積,從而得到SABD=SBCD=SBCN+SCND,最后由S四邊形ABNM=SABD﹣SMND求解.                  

【解答】解:(1)∵平行四邊形ABCD,                                               

∴AD∥BC,AD=BC,OB=OD,                                                              

∴∠DMN=∠BCN,∠MDN=∠NBC,                                                     

∴△MND∽△CNB,                                                                         

=,                                                                                        

∵M(jìn)為AD中點(diǎn),                                                                              

∴MD=AD=BC,即=,                                                                 

=,即BN=2DN,                                                                          

設(shè)OB=OD=x,則有BD=2x,BN=OB+ON=x+1,DN=x﹣1,                           

∴x+1=2(x﹣1),                                                                           

解得:x=3,                                                                                      

∴BD=2x=6;                                                                                     

                                                                                                          

(2)∵△MND∽△CNB,且相似比為1:2,                                         

∴MN:CN=DN:BN=1:2,                                                                  

∴SMND=SCND=1,SBNC=2SCND=4.                                             

∴SABD=SBCD=SBCN+SCND=4+2=6                                                   

∴S四邊形ABNM=SABD﹣SMND=6﹣1=5.                                                 

【點(diǎn)評(píng)】此題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.                    

                                                                                                       


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


在一次消防演習(xí)中,消防員架起一架25米長的云梯,如圖斜靠在一面墻上,梯子底端離墻7米.

(1)求這個(gè)梯子的頂端距地面有多高?

(2)如果消防員接到命令,要求梯子的頂端下降4米(云梯長度不變),那么云梯的底部在水平方向應(yīng)滑動(dòng)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知AB=DC,AD=BC,那么圖中全等三角形有(     )

A.5對  B.4對   C.3對  D.2對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在△ABC中,∠C=90°,AC=1,AB=3,則cosB=      .                    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


△ABC中,AB=8,BC=4,則△ABC中最小的角是( 。                            

A.∠A                        B.∠B                         C.∠C                        D.無法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在直角坐標(biāo)系中,一條直線經(jīng)過A(﹣1,5),P(﹣2,a),B(3,﹣3)三點(diǎn).                    

(1)求a的值;                                                                                

(2)設(shè)這條直線與y軸相交于點(diǎn)D,求△OPD的面積.                                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在直角坐標(biāo)系中,直線AB經(jīng)點(diǎn)P(3,4),與坐標(biāo)軸正半軸相交于A,B兩點(diǎn),當(dāng)△AOB的面積最小時(shí),△AOB的內(nèi)切圓的半徑是( 。                                                                         

                                                                          

A.2                            B.3.5                          C.              D.4

                                                                                                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


四邊形有2條對角線,五邊形有5條對角線,六邊形有9條對角線,……n邊形有

        條對角線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列命題中,是真命題的共有( 。

①相等的角都是對頂角;②過一點(diǎn)有且只有一條直線與已知直線平行;

③若a∥b,b∥c,則a∥c;④同一平面內(nèi)兩條不相交的直線一定平行.

A.1個(gè)  B.2個(gè)   C.3個(gè)  D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案