如圖,在平行四邊形ABCD中,對角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
【考點(diǎn)】相似三角形的判定與性質(zhì);平行四邊形的性質(zhì).
【專題】幾何綜合題.
【分析】(1)由四邊形ABCD為平行四邊形,得到對邊平行且相等,且對角線互相平分,根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到兩對角相等,進(jìn)而確定出三角形MND與三角形CNB相似,由相似得比例,得到DN:BN=1:2,設(shè)OB=OD=x,表示出BN與DN,求出x的值,即可確定出BD的長;
(2)由相似三角形相似比為1:2,得到CN=2MN,BN=2DN.已知△DCN的面積,則由線段之比,得到△MND與△CNB的面積,從而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四邊形ABNM=S△ABD﹣S△MND求解.
【解答】解:(1)∵平行四邊形ABCD,
∴AD∥BC,AD=BC,OB=OD,
∴∠DMN=∠BCN,∠MDN=∠NBC,
∴△MND∽△CNB,
∴=,
∵M(jìn)為AD中點(diǎn),
∴MD=AD=BC,即=,
∴=,即BN=2DN,
設(shè)OB=OD=x,則有BD=2x,BN=OB+ON=x+1,DN=x﹣1,
∴x+1=2(x﹣1),
解得:x=3,
∴BD=2x=6;
(2)∵△MND∽△CNB,且相似比為1:2,
∴MN:CN=DN:BN=1:2,
∴S△MND=S△CND=1,S△BNC=2S△CND=4.
∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6
∴S四邊形ABNM=S△ABD﹣S△MND=6﹣1=5.
【點(diǎn)評(píng)】此題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在一次消防演習(xí)中,消防員架起一架25米長的云梯,如圖斜靠在一面墻上,梯子底端離墻7米.
(1)求這個(gè)梯子的頂端距地面有多高?
(2)如果消防員接到命令,要求梯子的頂端下降4米(云梯長度不變),那么云梯的底部在水平方向應(yīng)滑動(dòng)多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)系中,一條直線經(jīng)過A(﹣1,5),P(﹣2,a),B(3,﹣3)三點(diǎn).
(1)求a的值;
(2)設(shè)這條直線與y軸相交于點(diǎn)D,求△OPD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,直線AB經(jīng)點(diǎn)P(3,4),與坐標(biāo)軸正半軸相交于A,B兩點(diǎn),當(dāng)△AOB的面積最小時(shí),△AOB的內(nèi)切圓的半徑是( 。
A.2 B.3.5 C. D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列命題中,是真命題的共有( 。
①相等的角都是對頂角;②過一點(diǎn)有且只有一條直線與已知直線平行;
③若a∥b,b∥c,則a∥c;④同一平面內(nèi)兩條不相交的直線一定平行.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com