【題目】如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)見解析;(2)4;(3).
【解析】
(1)如圖,連接OA,欲證明AB為⊙O的切線,只需證明AB⊥OA即可;
(2)如圖,連接AD,構(gòu)建直角△ADC,利用“30度角所對的直角邊是斜邊的一半”求得AD=4,然后利用勾股定理來求弦AC的長度;
(3)根據(jù)圖示知,圖中陰影部分的面積=扇形ADO的面積+△AOC的面積.
解:(1)證明:如圖,連接OA.
∵AB=AC,∠ABC=30°,
∴∠ABC=∠ACB=30°.
∴∠AOB=2∠ACB=60°,
∴在△ABO中,∠BAO=180°﹣∠ABO﹣∠AOB=90°,即AB⊥OA,
又∵OA是⊙O的半徑,
∴AB為⊙O的切線
(2)如圖,連接AD.
∵CD是⊙O的直徑,
∴∠DAC=90°.
∵由(1)知,∠ACB=30°,
∴
則根據(jù)勾股定理知
∴弦AC的長是
(3)由(2)知,在△ADC中,∠DAC=90°,AD=4, 則
∵點O是△ADC斜邊上的中點,
∴
根據(jù)圖示知,S陰影=S扇形ADO+S△AOC
∴圖中陰影部分的面積是
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點O旋轉(zhuǎn),分別交邊AD、BC于點E、F,點P是邊DC上的一個動點,且保持DP=AE,連接PE、PF,設AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
如圖,已知反比例函數(shù)的圖象經(jīng)過點(,8),直線y=﹣x+b經(jīng)過該反比例函數(shù)圖象上的點Q(4,m).
(1)求上述反比例函數(shù)和直線的函數(shù)表達式;
(2)設該直線與x軸、y軸分別相交于A、B兩點,與反比例函數(shù)圖象的另一個交點為P,連接0P、OQ,求△OPQ的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣在實施“村村通”工程中,決定在A、B兩村之間修一條公路,甲、乙兩個工程隊分別從A、B兩村同時開始相向修路,施工期間,甲隊改變了一次修路速度,乙隊因另有任務提前離開,余下的任務由甲隊單獨完成,直到公路修通,甲、乙兩個工程隊各自所修公路的長度y(米)與修路時間x(天)之間的函數(shù)圖象如圖所示.
(1)求甲隊前8天所修公路的長度;
(2)求甲工程隊改變修路速度后y與x之間的函數(shù)關系式;
(3)求這條公路的總長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號):
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學生;
(2)補全條形統(tǒng)計圖;
(3)該班學生所穿校服型號的眾數(shù)為 ,中位數(shù)為 ;
(4)如果該校預計招收新生1500名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長.
(1)如果x=-1是方程的根,試判斷△ABC的形狀,并說明理由;
(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的網(wǎng)格中中每個小正方形的邊長均為,線段的兩個端點均在格點上;
(1)畫出以為一條直角邊的,點在格點上,且的面積為;
(2)在圖中畫出以為斜邊的,點在格點上,且的面積為,并請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.
(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是________,推斷的數(shù)學依據(jù)是________.
(2)如圖②,在△ABC中,∠B=45°,AB=,BC=8,AD為邊BC的中線,求邊BC的中垂距.
(3)如圖③,在矩形ABCD中,AB=6,AD=4.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南崗區(qū)某中學的王老師統(tǒng)計了本校九年一班學生參加體育達標測試的報名情況,并把統(tǒng)計的數(shù)據(jù)繪制成了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)圖中提供的數(shù)據(jù)回答下列問題:
(1)該學校九年一班參加體育達標測試的學生有多少人?
(2)補全條形統(tǒng)計圖的空缺部分;
(3)若該年級有1200名學生,估計該年級參加仰臥起坐達標測試的有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com