【題目】如圖,線段AB=15cm,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動(dòng),當(dāng)與點(diǎn)P重合后立即改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值.
(2)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),在P與Q相遇前,若點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.
(3)若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),Q點(diǎn)與P點(diǎn)相遇后仍然繼續(xù)往A點(diǎn)的方向運(yùn)動(dòng)到A點(diǎn)后再返回,求整個(gè)運(yùn)動(dòng)過(guò)程中PQ為6cm時(shí)t的值 .
【答案】(1)t=5(秒);(2)t=3或t=30/7;(3)當(dāng)PQ=6cm時(shí),t=3或t=7或t=9或t=21
【解析】
(1)根據(jù)相遇時(shí),兩點(diǎn)共同走了15cm列方程解答即可;
(2)分兩種情況列方程求解即可:①當(dāng)AP= AQ時(shí),②當(dāng)AP= AQ時(shí);
(3)分四種情況列方程求解即可:①相遇前PQ=6,②相遇后Q未到達(dá)A點(diǎn)前PQ=6,③相遇后Q到達(dá)A后返回未追上P時(shí)PQ=6,④相遇后Q到達(dá)A后返回追上P時(shí)PQ=6.
解: (1)∵t+2t=15 ,
則t=5(秒);
(2)①當(dāng)AP= AQ時(shí),即t= (15-2t),
∴t=3;
②當(dāng)AP= AQ時(shí),即t= (15-2t),
∴t=,
即當(dāng)P點(diǎn)是AQ的三等分點(diǎn)時(shí)t=3或t=;
(3)①相遇前PQ=6,即15-t-2t=6,
∴t=3
②相遇后Q未到達(dá)A點(diǎn)前PQ=6,即t+2t=15+6
∴t=7,
③相遇后Q到達(dá)A后返回未追上P時(shí)PQ=6,即2t-15+6=t,
∴t=9,
④相遇后Q到達(dá)A后返回追上P時(shí)PQ=6,即2t-15-t=6,
∴t=21,
綜上所述當(dāng)PQ=6cm時(shí),t=3或t=7或t=9或t=21.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD垂直平分OB于點(diǎn)E,點(diǎn)F在AB延長(zhǎng)線上,∠AFC=30°.
(1)求證:CF為⊙O的切線.
(2)若半徑ON⊥AD于點(diǎn)M,CE=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角板如圖①放置,圖②是由它抽象出的幾何圖形,點(diǎn)B,C,E在同一條直線上,連接CD.求證:CD⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是邊AB上的動(dòng)點(diǎn),若在邊AC,BC上分別有點(diǎn)E,F,使得
AE=AD,BF=BD.
(1)設(shè)∠C=α,求∠EDF(用含α的代數(shù)式表示);
(2)尺規(guī)作圖:分別在邊AB,AC上確定點(diǎn)P,Q(PQ不與DE平行或重合),使得
∠CPQ=∠EDF.(保留作圖痕跡,不寫(xiě)作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)?jiān)诰W(wǎng)格坐標(biāo)系中畫(huà)出二次函數(shù)的大致圖象(注:圖中小正方形網(wǎng)格的邊長(zhǎng)為),根據(jù)圖象填空:
()當(dāng)__________時(shí),有最__________值__________.
()隨的增大而減小的自變量的取值范圍是__________.
()結(jié)合圖象直接寫(xiě)出時(shí)的范圍:__________.
()結(jié)合圖象直接寫(xiě)出時(shí)的取值范圍:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的邊AB長(zhǎng)為4cm,DE平分∠ADC,若∠B=80°,∠DAE=50°,求平行四邊形ABCD的周長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且,連接BF.
證明:;
當(dāng)滿足什么條件時(shí),四邊形AFBD是矩形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,.點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),、分別平分和、分別交射線于點(diǎn),.
(1)①的度數(shù)是________;
②,________;
(2)求的度數(shù);
(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),與之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由;若變化,請(qǐng)寫(xiě)出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)?/span>“友好拋物線”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過(guò)A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問(wèn)在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com