15.如圖,C為AB的中點(diǎn),AD=CE,CD=BE,∠E=58°,∠A=72°,求∠DCE的度數(shù).

分析 由C為AB的中點(diǎn),得到AC=BC,推出△ADC≌△CEB,根據(jù)全等三角形的性質(zhì)得到∠D=∠E=58°,∠ECB=∠A=72°,由三角形的內(nèi)角和得到∠ACD=180°-∠A-∠D=50°,根據(jù)平角的定義即可得到結(jié)論.

解答 解:∵C為AB的中點(diǎn),
∴AC=BC,
在△ADC與△CEB中,
$\left\{\begin{array}{l}{AD=CE}\\{CD=EB}\\{AC=BC}\end{array}\right.$,
∴△ADC≌△CEB,
∴∠D=∠E=58°,∠ECB=∠A=72°,
∴∠ACD=180°-∠A-∠D=50°,
∴∠DCE=180°-∠ACD-∠BCE=60°.

點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),三角形的內(nèi)角和,平角的定義,熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.方程x2-2x-k=0的一個(gè)實(shí)數(shù)根為3,則另一個(gè)根為-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,AD是BC邊上的高,⊙P是△ABC的外接圓.
(1)如圖1,若AD=5,BD=1,BC=6,求⊙P的半徑;
(2)如圖2,若∠ABC=75°,∠ACB=45°,I是△ABC的內(nèi)心,求$\frac{AI}{AP}$的值;
(3)如圖3,若∠ABC-∠ACB=30°,當(dāng)B,C運(yùn)動(dòng)時(shí),$\frac{DC-BD}{AP}$的值是否變化?若不變,求出其值;若變化,求出其變化的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知菱形ABCD,對(duì)角線AC、BD相交于點(diǎn)O,AB=20,AC=32.點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位的速度沿線段AC向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)O出發(fā),以每秒3個(gè)單位的速度沿折線OD-DC向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P、Q中有一個(gè)點(diǎn)達(dá)到終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接BP、PQ、BQ,設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.
(1)求線段OD的長(zhǎng);
(2)在整個(gè)運(yùn)動(dòng)過程中,△BPQ能否成為直角三角形?若能,請(qǐng)求出符合題意的t的值;若不能,請(qǐng)說明理由;
(3)以P為圓心,PQ為半徑作⊙P,當(dāng)⊙P與線段CD只有一個(gè)公共點(diǎn)時(shí),求t的值或t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,正方形ABCD中,E、F分別在BC、CD上,且AE=BE+DF
(1)求證:∠DAE=2∠DAF;
(2)過D作DH⊥AF于H,連接CH,且∠CHF=45°,探究FH與AE的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,點(diǎn)D在AB上,點(diǎn)E在AC上,AB=AC,∠B=∠C.
(1)AD與AE相等嗎?請(qǐng)說明理由.
(2)圖中還有其他的全等三角形嗎?如果有的話,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,AB=5,AC=6,BC=7,點(diǎn)D,E分別在AB,AC上,DE∥BC.
(1)當(dāng)AD:DB=4:3時(shí),求DE長(zhǎng);
(2)當(dāng)△ADE的周長(zhǎng)與四邊形BCED的周長(zhǎng)相等,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.一個(gè)一次函數(shù)的圖象與直線y=-2x+1平行,且經(jīng)過點(diǎn)(-2,-6),則這個(gè)一次函數(shù)的解析式為y=-2x-10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.內(nèi)角和為1800°的多邊形是12邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案