【題目】如圖,,點(diǎn)、分別在、上,連接、的平分線交于點(diǎn)、的平分線交于點(diǎn)

求證:四邊形是矩形.

小明在完成的證明后繼續(xù)進(jìn)行了探索,過(guò)點(diǎn),分別交、于點(diǎn)、,過(guò)點(diǎn),分別交、于點(diǎn),得到四邊形.此時(shí),他猜想四邊形是菱形.請(qǐng)?jiān)谙铝锌驁D中補(bǔ)全他的證明思路.

小明的證明思路:由,易證,四邊形是平行四邊形.要證是菱形,只要證.由已知條件________,可證,故只要證,即證,易證________,________,故只要證,易證,,________,故得,即可得證.

【答案】平分

【解析】

(1)AB∥CD可得∠AEF=∠DFE,∠BEF=∠CFE,又由EG、FG、EH、FH均為角平分線可得DG∥FH,EH∥GF,且∠EGF=∠EHF=90°,故可得四邊形EGFH為矩形;

(2)利用MN∥EFFG是角平分線可證△NGF為等腰三角形,得NG=NF;再通過(guò)證明△MGE≌△QHFMG=QF,從而得到NM=NQ進(jìn)而證明四邊形是菱形.

(1)證明:∵EH平分∠BEF,
∴∠FEH=∠BEF,
∵FH平分∠DFE,
∴∠EFH=∠DFE,
∵AB∥CD,
∴∠BEF+∠DFE=180°,
∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,
∵∠FEH+∠EFH+∠EHF=180°,
∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,
同理可得:∠EGF=90°,
∵EG平分∠AEF,
∴∠EFG=∠AEF,
∵EH平分∠BEF,
∴∠FEH=∠BEF,
點(diǎn)A、E、B在同一條直線上,
∴∠AEB=180°,
∠AEF+∠BEF=180°,
∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,
∠GEH=90°
四邊形EGFH是矩形;
(2) 答案不唯一:
AB∥CD,MN∥EF,PQ∥EF,易證四邊形MNQP是平行四邊形,
要證MNQP是菱形,只要證MN=NQ,由已知條件:FG平分∠CFE,MN∥EF,
故只要證GM=FQ,即證△MGE≌△QFH,易證 GE=FH、∠GME=∠FQH.
故只要證∠MGE=∠QFH,易證∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得證;
故答案為:FG平分∠CFE,GE=FH、∠GME=∠FQH,∠GEF=∠EFH.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角ΔABC中,已知AB=AC,D為底邊BC上的一點(diǎn),E為線段AD上的一點(diǎn),且∠BED=BAC=2DEC,連接CE.

1)求證:∠ABE=DAC

2)若∠BAC=60°,試判斷BDCD有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電腦銷售商試銷某一品牌電腦(出廠為/臺(tái))以/臺(tái)銷售時(shí),平均每月可銷售臺(tái),現(xiàn)為了擴(kuò)大銷售,銷售商決定降價(jià)銷售,在原來(lái)月份平均銷售量的基礎(chǔ)上,經(jīng)月份的市場(chǎng)調(diào)查,月份調(diào)整價(jià)格后,月銷售額達(dá)到元.已知電腦價(jià)格每臺(tái)下降元,月銷售量將上升臺(tái).

月份到月份銷售額的月平均增長(zhǎng)率;

月份時(shí)該電腦的銷售價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.

現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,停止后,指針指向數(shù)字的概率為_(kāi)_______;

小明和小華利用這個(gè)轉(zhuǎn)盤(pán)做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是售貨員與小麗的對(duì)話:

根據(jù)對(duì)話內(nèi)容解答下列問(wèn)題:

(1)A,B兩種文具的單價(jià)各是多少元?

(2)若購(gòu)買(mǎi)A,B兩種文具共20件,其中A種文具的數(shù)量少于10件,且購(gòu)買(mǎi)總費(fèi)用不超過(guò)260元,共有哪幾種購(gòu)買(mǎi)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)點(diǎn)先繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,再作出它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)稱為一次變換,已知點(diǎn)A的坐標(biāo)為(﹣2,0),把點(diǎn)A經(jīng)過(guò)連續(xù)2014次這樣的變換得到的點(diǎn)A2014的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC中,BD、CD分別平分∠ABC,∠ACB,過(guò)點(diǎn)DEF//BCAB、AC于點(diǎn)E、F,試說(shuō)明 BE+CF=EF的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,過(guò)作一直線與相交于點(diǎn),過(guò)垂直于點(diǎn),過(guò)垂直于點(diǎn),在上截取,再過(guò)垂直.若.則與四邊形的面積之和為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是弧的中點(diǎn),⊙O的切線BD交AC的延長(zhǎng)線于點(diǎn)D,E是OB的中點(diǎn),CE的延長(zhǎng)線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.

⑴求證:AC=CD.

⑵若OB=2,求BH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案