【題目】如圖,矩形中,,,是邊上一點(diǎn),將沿直線對(duì)折,得到.
(1)當(dāng)平分時(shí),求的長(zhǎng);
(2)連接,當(dāng),求的面積;
(3)當(dāng)射線交于點(diǎn)時(shí),求的最大值.
【答案】(1);(2);(3)
【解析】
(1)由折疊性質(zhì)得∠MAN=∠DAM,證出∠DAM=∠MAN=∠NAB,由三角函數(shù)得出DM=ADtan∠DAM=即可;
(2)延長(zhǎng)MN交AB延長(zhǎng)線于點(diǎn)Q,由矩形的性質(zhì)得出∠DMA=∠MAQ,由折疊性質(zhì)得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,證出MQ=AQ,設(shè)NQ=x,則AQ=MQ=1+x,證出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面積;
(3)過點(diǎn)A作AH⊥BF于點(diǎn)H,證明△ABH∽△BFC,得出對(duì)應(yīng)邊成比例,得出當(dāng)點(diǎn)N、H重合(即AH=AN)時(shí),AH最大,BH最小,CF最小,DF最大,此時(shí)點(diǎn)M、F重合,B、N、M三點(diǎn)共線,由折疊性質(zhì)得:AD=AH,由AAS證明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出結(jié)果.
解:(1)由折疊性質(zhì)得:,
,
平分,,
,
四邊形是矩形,
,
,
;
(2)延長(zhǎng)交延長(zhǎng)線于點(diǎn),如圖1所示:
四邊形是矩形
,
,
由折疊性質(zhì)得:,
,,,
,
,
設(shè),則,
,
,
在中,由勾股定理得:,
,
解得:,
,,
,
;
(3)過點(diǎn)作于點(diǎn),如圖2所示:
四邊形是矩形
,
,
,
,
,
,,
可以看到點(diǎn)是在以為圓心3為半徑的圓上運(yùn)動(dòng),所以當(dāng)射線與圓相切時(shí),最大,此時(shí)、、三點(diǎn)共線,如圖3所示
由折疊性質(zhì)得:,
,
,
在和中,,
,
,
由勾股定理得:,
,
的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)得到△A'B'C',此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路l,AB是A到l的小路.現(xiàn)新修一條路AC到公路l.小明測(cè)量出∠ACD=31°,∠ABD=45°,BC=50m.請(qǐng)你幫小明計(jì)算他家到公路l的距離AD的長(zhǎng)度?(精確到0.1m;參考數(shù)據(jù) tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一根直尺短邊長(zhǎng),長(zhǎng)邊長(zhǎng),還有一塊銳角為45°的直角三角形紙板,它的斜邊長(zhǎng)為.如圖1,將直尺的短邊與直角三角形紙板的斜邊重合,且點(diǎn)與點(diǎn)重合.將直尺沿射線方向平移,如圖2,設(shè)平移的長(zhǎng)度為,且滿足,直尺和三角形紙板重疊部分的面積為.
(1)當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí), .
(2)當(dāng)時(shí)(如圖3),請(qǐng)用含的代數(shù)式表示.
(3)是否存在一個(gè)位置,使重疊部分面積為?若存在求出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說明點(diǎn)C在一次函數(shù)的圖象上;
(2)若兩個(gè)點(diǎn)(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請(qǐng)求出k的值;如果不存在,請(qǐng)說明理由;
(3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過點(diǎn)E作y軸的平行線,與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0<a≤2時(shí),求線段EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在中,,,,交線段于點(diǎn).
(1)如圖1,當(dāng)時(shí),求證:;
(2)當(dāng)時(shí).
①如圖2,猜想線段、之間的數(shù)量關(guān)系,并證明你的猜想;
②如圖3,點(diǎn)時(shí)邊的中點(diǎn),連接,與交于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科研小組計(jì)劃對(duì)某一品種的西瓜用兩種種植技術(shù)種植.在選擇種植技術(shù)時(shí),該科研小組主要關(guān)心的問題是:西瓜的產(chǎn)量和產(chǎn)量的穩(wěn)定性,以及西瓜的優(yōu)等品率.為了解這兩種種植技術(shù)種出的西瓜的質(zhì)量情況,科研小組各對(duì)兩塊自然條件相同的試驗(yàn)田進(jìn)行對(duì)比試驗(yàn),并從這兩塊實(shí)驗(yàn)田中隨機(jī)抽取20個(gè)西瓜,分別稱重后,將稱重的結(jié)果記錄如下:
回答下列問題:
(1)若將質(zhì)量為4.5~5.5(單位:kg)的西瓜記為優(yōu)等品,完成下表:
優(yōu)等品西瓜個(gè)數(shù) | 平均數(shù) | 方差 | |
甲種種植技術(shù)種出的西瓜質(zhì)量 | 4.98 | 0.27 | |
乙種種植技術(shù)種出的西瓜質(zhì)量 | 15 | 4.97 | 0.21 |
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該科研小組應(yīng)選擇哪種種植技術(shù)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形M,N間的“距離”,記作特別地,若圖形M,N有公共點(diǎn),規(guī)定.
如圖1,的半徑為2,
點(diǎn),,則______,______.
已知直線l:與的“距離”,求b的值.
已知點(diǎn),,的圓心為,半徑為若,請(qǐng)直接寫出m的取值范圍______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)(k≠0)圖象上的兩點(diǎn),延長(zhǎng)線段AB交y軸于點(diǎn)C,且B為線段AC的中點(diǎn),過點(diǎn)A作AD⊥x軸于點(diǎn)D,E為線段OD的三等分點(diǎn),且OE<DE.連接AE,BE.若S△ABE=7,則k的值為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com