【題目】如圖,△ABC 中,AB=AC,D、E、F 分別為 AB、BC、AC 上的點(diǎn),且BD=CE,∠DEF=∠B.
(1)求證:∠BDE=∠CEF;
(2)當(dāng)∠A=60°時,求證:△DEF 為等邊三角形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)利用外角的性質(zhì)可得∠B+∠BDE=∠DEF+∠CEF,結(jié)合條件可證得結(jié)論;
(2)由條件可知∠B=∠C=60°,結(jié)合條件可證明△BDE≌△CEF,可證得DE=EF,則可證明△DEF為等邊三角形.
(1)∵∠DEC是△BDE的一個外角,
∴∠B+∠BDE=∠DEF+∠CEF,
∵∠DEF=∠B,
∴∠BDE=∠CEF;
(2)由(1)可知∠BDE=∠CEF,
∵AB=AC,∠A=60°
∴∠B=∠C=60°,
∴∠DEF=60°,
在△BDE和△CEF中
,
∴△BDE≌△CEF(ASA),
∴DE=EF,
∴△DEF為等邊三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知射線 DM與直線AB交于點(diǎn)A,線段EC與直線AB交于點(diǎn)C,AB∥DE.
(1)當(dāng)∠MAC=100°,∠BCE=120°時,把EC繞點(diǎn)E旋轉(zhuǎn)多大角度(所求角度小于180°)時,可判定MD∥EC?請你設(shè)計出兩種方案,并畫出草圖;
(2)若將EC繞點(diǎn)E逆時針旋轉(zhuǎn)60°時,點(diǎn)C與點(diǎn)A恰好重合,請畫出草圖,并在圖中找出同位角、內(nèi)錯角各兩對(先用數(shù)字標(biāo)出角,再回答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)我們利用兩種不同的方法計算同一圖形的面積時,可以得到一個等式.例如,由圖①,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由圖②,寫出所得的等式;
(2)利用(1)中所得到的結(jié)論,解決下面的問題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)如圖③,琪琪用2 張A型紙片,3 張B型紙片,5 張C型紙片拼出一個長方形,那么該長方形較長的一條邊長為多少.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車從A地駛往B地,前三分之一路段為普通公路,其余路段為高速公路.已知汽車在普通公路上行駛的速度為60km/h,在高速公路上行駛的速度為100km/h.汽車從A地到B地共行駛了2.2h.請你根據(jù)以上信息,就該汽車行駛的“路程”或“時間”,提出一個問題: ,并列出方程,求出解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過點(diǎn)A(13,0),直線y=kx﹣3k+4與⊙O交于B、C兩點(diǎn),則弦BC的長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC 中,點(diǎn) D、E 分別在邊 BC、AC 上,且 AE=CD,BE 與 AD 相交于點(diǎn) P,BQ⊥AD 于點(diǎn) Q.
(1)求證:BE=AD;
(2)若 PQ=4,求 BP 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校綜合實(shí)踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺階AC的坡度為1: (即AB:BC=1: ),且B、C、E三點(diǎn)在同一條直線上.請根據(jù)以上條件求出樹DE的高度(側(cè)傾器的高度忽略不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線.
(1)當(dāng)∠BAC=40°時,∠BPC= ,∠BQC= ;
(2)當(dāng)BM∥CN時,求∠BAC的度數(shù);
(3)如圖②,當(dāng)∠BAC=120°時,BM、CN所在直線交于點(diǎn)O,直接寫出∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中BC=8,CD=6,將△ABE沿BE折疊,使點(diǎn)A恰好落在對角線BD上F處,則DE的長是( )
A.3
B.
C.5
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com