【題目】小易同學(xué)在數(shù)學(xué)學(xué)習(xí)時(shí),遇到這樣一個(gè)問(wèn)題:如圖,已知點(diǎn)在直線(xiàn)外,請(qǐng)用一把刻度尺(僅用于測(cè)量長(zhǎng)度和畫(huà)直線(xiàn)),畫(huà)出過(guò)點(diǎn)且平行于的直線(xiàn),并簡(jiǎn)要說(shuō)明你的畫(huà)圖依據(jù).

小易想到一種作法:

①在直線(xiàn)上任取兩點(diǎn)、(兩點(diǎn)不重合);

②利用刻度尺連接并延長(zhǎng)到,使;

③連接并量出中點(diǎn);

④作直線(xiàn).

∴直線(xiàn)即為直線(xiàn)的平行線(xiàn).

1)請(qǐng)依據(jù)小易同學(xué)的作法,補(bǔ)全圖形.

2)證明:∵

的中點(diǎn),

又∵中點(diǎn),

3)你還有其他畫(huà)法嗎?請(qǐng)畫(huà)出圖形,并簡(jiǎn)述作法.

作法:

【答案】1)見(jiàn)解析;(2)三角形的中位線(xiàn)平行于三角形的第三邊;(3)見(jiàn)解析.

【解析】

1)根據(jù)已知條件按步驟畫(huà)圖即可;

2)分析可知PD的中位線(xiàn),然后依據(jù)的是三角形中位線(xiàn)定理;

3)可利用全等三角形的性質(zhì)去畫(huà)圖.

1)圖形如下:

2)∵P,D分別是AC,BC的中點(diǎn),

PD的中位線(xiàn),

(三角形的中位線(xiàn)平行于三角形的第三邊);

3)如圖:

作法:(1)在直線(xiàn)上任取兩點(diǎn)、(兩點(diǎn)不重合);

2)連接AP,取AP的中點(diǎn)E

3)連接BE,并延長(zhǎng)至點(diǎn)F,使

4)作直線(xiàn)PF,則直線(xiàn)即為直線(xiàn)的平行線(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)AB兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,點(diǎn)B的坐標(biāo)為(10),則下列結(jié)論:①AB=4②b2﹣4ac0;③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有( 。﹤(gè)

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,3n),點(diǎn)B的坐標(biāo)為(5n+2,1).

(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;

2)將一次函數(shù)y=kx+b的圖象沿y軸向下平移a個(gè)單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個(gè)交點(diǎn),求a的值;

(3)點(diǎn)Ey軸上一個(gè)動(dòng)點(diǎn),若SAEB=5,則點(diǎn)E的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,BC三點(diǎn)在同一直線(xiàn)上,∠DAE=∠AEB∠D=∠BEC,

1)求證:BD∥CE;

2)若∠C=70°,∠DAC=50°,求∠DBE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列網(wǎng)格中的六邊形是由一個(gè)邊長(zhǎng)為6的正方形剪去左上角一個(gè)邊長(zhǎng)為2的正方形所得,該六邊形按一定的方法可剪拼成一個(gè)正方形.

1)根據(jù)剪拼前后圖形的面積關(guān)系求出拼成的正方形的邊長(zhǎng)為_(kāi)__________;

2)如圖甲,把六邊形沿剪成①,②,③三個(gè)部分,請(qǐng)?jiān)趫D甲中畫(huà)出將②,③與①拼成的正方形,然后標(biāo)出②,③變動(dòng)后的位置;

3)在圖乙中畫(huà)出一種與圖甲不同位置的兩條剪裁線(xiàn),并畫(huà)出將此六邊形剪拼成的正方形.(通過(guò)平移,旋轉(zhuǎn),翻折與圖甲重合的方法不可以)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩組卡片共5張,A組的三張分別寫(xiě)有數(shù)字2,4,6B組的兩張分別寫(xiě)有3,5.它們除了數(shù)字外沒(méi)有任何區(qū)別,

1隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某小區(qū)實(shí)施供暖改造工程,現(xiàn)甲、乙兩工程隊(duì)分別同時(shí)開(kāi)挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說(shuō)法中,正確的個(gè)數(shù)有( )個(gè).

甲隊(duì)每天挖100米;

乙隊(duì)開(kāi)挖兩天后,每天挖50米;

當(dāng)x=4時(shí),甲、乙兩隊(duì)所挖管道長(zhǎng)度相同;

甲隊(duì)比乙隊(duì)提前2天完成任務(wù).

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】甲隊(duì)每天挖=100米,正確.

乙隊(duì)開(kāi)挖兩天后,每天挖; 米,正確.

當(dāng)x=4時(shí),甲、乙兩隊(duì)交點(diǎn)在x=4處,所以挖管道長(zhǎng)度相同.正確.

知,甲挖完的時(shí)候,乙還有100米,1002. 甲隊(duì)比乙隊(duì)提前2天完成任務(wù).正確.

故選D.

型】單選題
結(jié)束】
11

【題目】103 000用科學(xué)記數(shù)法表示為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)EAD上一點(diǎn),連接AC,CB,B=AEC.

(1)如圖1,求證:CE=CD;

(2)如圖2,若∠B+CAE=120°,ACD=2BAC,求∠BAD的度數(shù);

3)如圖3,在(2)的條件下,延長(zhǎng)CE交⊙O于點(diǎn)G,若tanBAC= EG=2,求AE的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)60°;(3)7.

【解析】試題分析:(1)利用圓的內(nèi)接四邊形定理得到∠CED=∠CDE.

(2) CHDEH, 設(shè)ECH=α,由(1CE=CD,α表示CAEBAC,BAD=BAC+CAE.3連接AG,作GNACAMEG,先證明CAG=BAC設(shè)NG=5m,可得AN=11m,利用直角AGM, AEM,勾股定理可以算出m的值并求出AE長(zhǎng).

試題解析:

1)解:證明:四邊形ABCD內(nèi)接于O.

∴∠B+∠D=180°,

∵∠B=∠AEC,

∴∠AEC+∠D=180°

∵∠AEC+∠CED=180°,

∴∠D=CED,

CE=CD

2)解:作CHDEH

設(shè)ECH=α,由(1CE=CD

∴∠ECD=2α,

∵∠B=∠AEC,B+∠CAE=120°

∴∠CAE+∠AEC=120°,

∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,

∴∠CAE=90°﹣∠ACH=90°﹣60°+α=30°﹣α

ACD=∠ACH+∠HCD=60°+2α,

∵∠ACD=2∠BAC

∴∠BAC=30°+α,

∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°

3)解:連接AG,作GNAC,AMEG

∵∠CED=∠AEG,CDE=∠AGECED=∠CDE,

∴∠AEG=∠AGE,

AE=AG

EM=MG=EG=1,

∴∠EAG=∠ECD=2α

∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,

tanBAC=,

設(shè)NG=5m,可得AN=11m,AG==14m

∵∠ACG=60°,

CN=5m,AM=8m,MG==2m=1,

m=,

CE=CD=CG﹣EG=10m﹣2=3,

AE===7

型】解答
結(jié)束】
27

【題目】二次函數(shù)y=x12+k分別與x軸、y軸交于A、B、C三點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),直線(xiàn)y=x+2經(jīng)過(guò)點(diǎn)B,且與y軸交于點(diǎn)D

(1)如圖1,求k的值;

(2)如圖2,在第一象限的拋物線(xiàn)上有一動(dòng)點(diǎn)P,連接AP,過(guò)PPEx軸于點(diǎn)E,過(guò)EEFAP于點(diǎn)F,過(guò)點(diǎn)D作平行于x軸的直線(xiàn)分別與直線(xiàn)FE、PE交于點(diǎn)G、H,設(shè)點(diǎn)P的橫坐標(biāo)為t,線(xiàn)段GH的長(zhǎng)為d,求dt的函數(shù)關(guān)系式,并直接寫(xiě)出t的取值范圍;

3)在(2)的條件下,過(guò)點(diǎn)G作平行于y軸的直線(xiàn)分別交AP、x軸和拋物線(xiàn)于點(diǎn)MTN,tanMEA= ,點(diǎn)K為第四象限拋物線(xiàn)上一點(diǎn),且在對(duì)稱(chēng)軸左側(cè),連接KA,在射線(xiàn)KA上取一點(diǎn)R,連接RM,過(guò)點(diǎn)KKQAKPE的延長(zhǎng)線(xiàn)于Q,連接AQHK,若∠RAERMA=45°,AKQ與△HKQ的面積相等,求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)非負(fù)實(shí)數(shù)x“四含五入到個(gè)位的值記為,即當(dāng)n為非負(fù)整數(shù)時(shí),若n-≤x<n+,則=n.如:,,……根據(jù)以上材料,解決下列問(wèn)題:

(1)填空= ,= ;

2)若,則x的取值范圍是 ;

(3)求滿(mǎn)足的所有實(shí)數(shù)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案