(2002•連云港)如圖,等邊△ABC中,D為AB邊中點,DE⊥AC于E,EF∥AB交BC于F點,則△EFC與△ABC的面積之比為( )

A.3:4
B.9:16
C.4:5
D.16:25
【答案】分析:作AC邊上的高BG,垂足為G,在等邊三角形中,利用三線合一定理,結(jié)合DE∥BD,可求出AE與AC的關(guān)系,從而得出CE與AC的關(guān)系,那么再利用相似三角形的面積比等于相似比的平方,即可求.
解答:解:從B點作AC邊上的高BG,交AC于G,
∵DE⊥AC于E
∴DE∥BG
又∵D為AB邊中點
∴AE=GE
∵△ABC為等邊三角形,且BG為高
∴AG=GC
∴4AE=AC,即CE=AC
∵EF∥AB
∴△EFC∽△ABC
又∵CE=AC
∴△EFC與△ABC的面積之比=(AC)2:AC2=9:16.
故選B.
點評:本題考查對相似三角形性質(zhì)的理解.(1)相似三角形周長的比等于相似比.(2)相似三角形面積的比等于相似比的平方.(3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2002•連云港)關(guān)于正比例函數(shù)y=-2x,下列結(jié)論正確的是( )
A.圖象必經(jīng)過點(-1,-2)
B.圖象經(jīng)過第一、三象限
C.y隨x的增大而減小
D.不論x取何值,總有y<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•連云港)關(guān)于正比例函數(shù)y=-2x,下列結(jié)論正確的是( )
A.圖象必經(jīng)過點(-1,-2)
B.圖象經(jīng)過第一、三象限
C.y隨x的增大而減小
D.不論x取何值,總有y<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(02)(解析版) 題型:解答題

(2002•連云港)某電臺“市民熱線”對上周內(nèi)接到的熱線電話進行了分類統(tǒng)計,得到的統(tǒng)計信息如圖所示,某中有關(guān)房產(chǎn)城建的電話有30個,請你根據(jù)統(tǒng)計住處圖回答以下問題:
(1)上周“市民熱線”接到有環(huán)境保護方面的電話有多少個?
(2)據(jù)此估計,除環(huán)境保護方面的電話外,“市民熱線”今年(按52周計算)接到的熱線電話約為多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2002•連云港)已知:如圖1,PA切⊙O于A點,割線PCB交⊙O于C、B兩點,D是線段BP上一點,且PD2=PB•PC,直線AD交⊙O于E點.
(1)求證:AD平分∠BAC;
(2)求證:AB•AC=AD•AE;
(3)若把題中條件“D是線段BP上一點”改為“D是線段BP延長線上一點”(如圖2),則題(2)中的結(jié)論還成立嗎?若成立,請給出證明,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•連云港)已知梯形的下底長5cm,中位線長4cm,它的上底長為( )
A.2.5cm
B.3cm
C.3.5cm
D.4.5cm

查看答案和解析>>

同步練習(xí)冊答案