我們知道在平面直角坐標(biāo)系中,二次函數(shù)y=-(x-1)2+2的圖象可以由二次函數(shù)y=-x2的圖象先向上平移2個單位,再向右平移1個單位得到.由此我們是否可以聯(lián)想其它類型的函數(shù)也可以進行類似的平移呢?小明和小華兩位同學(xué)對于這個問題進行了如下思考:
(1)現(xiàn)把一次函數(shù)y=-x的圖象向上平移1個單位后得到一個新的函數(shù)的圖象的解析式為______;若再向右平移3個單位后的圖象的解析式為______.
(2)如果把反比例函數(shù)的圖象向上平移2個單位得反比例函數(shù)______的圖象,若再向右平移2個單位后可以得到反比例函數(shù)______的圖象;
(3)函數(shù)的圖象可以由函數(shù)圖象如何平移得到的;
(4)已知反比例函數(shù)的圖象將此函數(shù)向右平移2個單位后,再進行上下平移,使新函數(shù)的圖象與坐標(biāo)軸的兩個交點與原點構(gòu)成一個等腰三角形,求新函數(shù)的解析式.
【答案】分析:(1)直接根據(jù)函數(shù)圖象平移的法則進行解答即可;
(2)直接根據(jù)函數(shù)圖象平移的法則進行解答即可;
(3)先把函數(shù)化為y=-+2的形式,再根據(jù)函數(shù)圖象平移的法則進行解答即可;
(4)設(shè)新函數(shù)的解析式為y=+b,再由坐標(biāo)軸上點的坐標(biāo)特點得出函數(shù)圖象與兩坐標(biāo)軸的交點,由等腰三角形的性質(zhì)即可求出b的值.
解答:解:(1)由“上加下減”的原則可知,把一次函數(shù)y=-x的圖象向上平移1個單位后得到一個新的函數(shù)的圖象的解析式為y=-x+1;
由“左加右減”的原則可知,把一次函數(shù)y=-x+1的圖象向右平移3個單位后的圖象的解析式為y=-(x-3)+1,即y=-x+4.
故答案為:y=-x+1,y=-x+4;

(2)由“上加下減”的原則可知,把反比例函數(shù)y=的圖象向上平移2個單位后得到一個新的函數(shù)的圖象的解析式為y=+2;
由“左加右減”的原則可知,把一反比例函數(shù)y=+2的圖象向右平移2個單位后的圖象的解析式為y=+2.
故答案為:y=+2,y=+2;

(3)∵函數(shù)可化為y=-+2的形式,
∴把函數(shù)y=-先向左平移1個單位,再向上平移2個單位即可得到函數(shù)y=的圖象;

(4)設(shè)新函數(shù)的解析式是y=+b,
∵令x=0,則y=-+b,令y=0,則x=,
∴函數(shù)圖象與坐標(biāo)軸的兩交點為(0,-+b)、(,0),
∵新函數(shù)的圖象與坐標(biāo)軸的兩個交點與原點構(gòu)成一個等腰三角形
∴-+b=±,解得b=2,-2,,
當(dāng)b=時函數(shù)圖象與坐標(biāo)軸的交點只有一個是原點,故舍去,
∴b的值為±2,
∴新函數(shù)的解析式為:y=+2或y=-2.
點評:本題考查的是反比例函數(shù)綜合題,熟知“上加下減,左加右減”的法則是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,在數(shù)軸上,x=1表示一個點,而在平面直角坐標(biāo)系中,x=1表示一條直線;我們還知道,以二元一次方程2x-y+1=0的所有解為坐標(biāo)的點組成的圖形就是一次函數(shù)y=2x+1的圖象,它也是一條直線,如圖1.
觀察圖1可以得出:直線x=1與直線y=2x+1的交點P的坐標(biāo)(1,3)就是
方程組
x=1
2x-y+1=0
的解,所以這個方程組的解為
x=1
y=3

在直角坐標(biāo)系中,x≤1表示一個平面區(qū)域,即直線x=1以及它左側(cè)的部分,如圖②;y≤2x+1也表示一個平面區(qū)域,即直線y=2x+1以及它下方的部分,如圖3;
那么,
x≤1
y≤2x+1
y>0
所圍成的區(qū)域就是圖4中的陰影部分.
精英家教網(wǎng)
回答下列問題:
(1)在下面的直角坐標(biāo)系中,用作圖象的方法求出方程組
x=2
y=-
3
2
x+3
的解;
(2)在右面的直角坐標(biāo)系中用陰影表示,
x≤2
y≤-x2+2x+3
y≥-
3
2
x+3
所圍成的區(qū)域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道在平面直角坐標(biāo)系中,二次函數(shù)y=-(x-1)2+2的圖象可以由二次函數(shù)y=-x2的圖象先向上平移2個單位,再向右平移1個單位得到.由此我們是否可以聯(lián)想其它類型的函數(shù)也可以進行類似的平移呢?小明和小華兩位同學(xué)對于這個問題進行了如下思考:
(1)現(xiàn)把一次函數(shù)y=-x的圖象向上平移1個單位后得到一個新的函數(shù)的圖象的解析式為
y=-x+1
y=-x+1
;若再向右平移3個單位后的圖象的解析式為
y=-x+4
y=-x+4

(2)如果把反比例函數(shù)y=
3
x
的圖象向上平移2個單位得反比例函數(shù)
y=
3
x
+2
y=
3
x
+2
的圖象,若再向右平移2個單位后可以得到反比例函數(shù)
y=
3
x-2
+2
y=
3
x-2
+2
的圖象;
(3)函數(shù)y=
2x+1
x+1
的圖象可以由函數(shù)y=-
1
x
圖象如何平移得到的;
(4)已知反比例函數(shù)y=
3
x
的圖象將此函數(shù)向右平移2個單位后,再進行上下平移,使新函數(shù)的圖象與坐標(biāo)軸的兩個交點與原點構(gòu)成一個等腰三角形,求新函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們知道在平面直角坐標(biāo)系中,二次函數(shù)y=-(x-1)2+2的圖象可以由二次函數(shù)y=-x2的圖象先向上平移2個單位,再向右平移1個單位得到.由此我們是否可以聯(lián)想其它類型的函數(shù)也可以進行類似的平移呢?小明和小華兩位同學(xué)對于這個問題進行了如下思考:
(1)現(xiàn)把一次函數(shù)y=-x的圖象向上平移1個單位后得到一個新的函數(shù)的圖象的解析式為______;若再向右平移3個單位后的圖象的解析式為______.
(2)如果把反比例函數(shù)數(shù)學(xué)公式的圖象向上平移2個單位得反比例函數(shù)______的圖象,若再向右平移2個單位后可以得到反比例函數(shù)______的圖象;
(3)函數(shù)數(shù)學(xué)公式的圖象可以由函數(shù)數(shù)學(xué)公式圖象如何平移得到的;
(4)已知反比例函數(shù)數(shù)學(xué)公式的圖象將此函數(shù)向右平移2個單位后,再進行上下平移,使新函數(shù)的圖象與坐標(biāo)軸的兩個交點與原點構(gòu)成一個等腰三角形,求新函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們知道在平面直角坐標(biāo)系中,二次函數(shù)y=-(x-1)2+2的圖象可以由二次函數(shù)y=-x2的圖象先向上平移2個單位,再向右平移1個單位得到.由此我們是否可以聯(lián)想其它類型的函數(shù)也可以進行類似的平移呢?小明和小華兩位同學(xué)對于這個問題進行了如下思考:
(1)現(xiàn)把一次函數(shù)y=-x的圖象向上平移1個單位后得到一個新的函數(shù)的圖象的解析式為______;若再向右平移3個單位后的圖象的解析式為______.
(2)如果把反比例函數(shù)y=
3
x
的圖象向上平移2個單位得反比例函數(shù)______的圖象,若再向右平移2個單位后可以得到反比例函數(shù)______的圖象;
(3)函數(shù)y=
2x+1
x+1
的圖象可以由函數(shù)y=-
1
x
圖象如何平移得到的;
(4)已知反比例函數(shù)y=
3
x
的圖象將此函數(shù)向右平移2個單位后,再進行上下平移,使新函數(shù)的圖象與坐標(biāo)軸的兩個交點與原點構(gòu)成一個等腰三角形,求新函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案