【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當EFC是直角三角形時,那么BE的長為_____

【答案】1.5或3

【解析】根據(jù)矩形的性質(zhì),利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:

如圖1,當∠EFC=90°時,由∠AFE=∠B=90°,∠EFC=90°,可知點F在對角線AC上,且AE是∠BAC的平分線,所以可得BE=EF,然后再根據(jù)相似三角形的判定與性質(zhì),可知△ABC∽△EFC,即,代入數(shù)據(jù)可得,解得BE=1.5;

如圖2,當∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.

故答案為:1.5或3.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AF=BE,AEDF相交于點O

1)求證:DAF≌△ABE;

2)寫出線段AE、DF的數(shù)量和位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2bxc(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.

(1)寫出方程ax2bxc0的兩個根;

(2)寫出不等式ax2bxc0的解集;

(3)寫出yx的增大而減小的自變量x的取值范圍;

(4)若方程ax2bxck有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,AEBC于點E,ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.

(1)求證:CD與⊙O相切;

(2)BF24,OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(29a+c3b;(37a3b+2c0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數(shù)圖象上,則y1y3y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1x2,則x115x2.其中正確的結(jié)論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若以一條線段為對角線作正方形,則稱該正方形為這條線段的對角線正方形.例如,圖①中正方形ABCD即為線段BD對角線正方形.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點P從點C出發(fā),沿折線CA﹣AB5cm/s的速度運動,當點P與點B不重合時,作線段PB對角線正方形,設(shè)點P的運動時間為t(s),線段PB對角線正方形的面積為S(cm2).

(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB對角線正方形”.

(2)當線段PB對角線正方形有兩邊同時落在△ABC的邊上時,求t的值.

(3)當點P沿折線CA﹣AB運動時,求St之間的函數(shù)關(guān)系式.

(4)在整個運動過程中,當線段PB對角線正方形至少有一個頂點落在∠A的平分線上時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線,經(jīng)過A1,0)、B70)兩點,交y軸于D點,以AB為邊在x軸上方作等邊△ABC

1)求拋物線的解析式;

2)在x軸上方的拋物線上是否存在點M,是SABM=SABC?若存在,請求出點M的坐標;若不存在,請說明理由;

3)如圖2,E是線段AC上的動點,F是線段BC上的動點,AFBE相交于點P

①若CE=BF,試猜想AFBE的數(shù)量關(guān)系及∠APB的度數(shù),并說明理由;

②若AF=BE,當點EA運動到C時,請直接寫出點P經(jīng)過的路徑長(不需要寫過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E在對角線AC上,連接EB、ED.

(1)求證:△BCE≌△DCE;

(2)延長BE交AD于點F,若∠DEB=140,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長.

查看答案和解析>>

同步練習冊答案