某工廠以80元/箱的價(jià)格購(gòu)進(jìn)60箱原材料,準(zhǔn)備由甲、乙兩車間全部用于生產(chǎn)A產(chǎn)品.甲車間用每箱原材料可生產(chǎn)出A產(chǎn)品12千克,需耗水4噸;乙車間通過節(jié)能改造,用每箱原材料可生產(chǎn)出的A產(chǎn)品比甲車間少2千克,但耗水量是甲車間的一半.已知A產(chǎn)品售價(jià)為30元/千克,水價(jià)為5元/噸.如果要求這兩車間生產(chǎn)這批產(chǎn)品的總耗水量不得超過200噸,那么該廠如何分配兩車間的生產(chǎn)任務(wù),才能使這次生產(chǎn)所能獲取的利潤(rùn)w最大?最大利潤(rùn)是多少?(注:利潤(rùn)=產(chǎn)品總售價(jià)-購(gòu)買原材料成本-水費(fèi))
解:設(shè)甲車間用x箱原材料生產(chǎn)A產(chǎn)品,則乙車間用(60-x)箱原材料生產(chǎn)A產(chǎn)品.
由題意得4x+2(60-x)≤200, 解得x≤40.
w=30[12x+10(60-x)]-80×60-5[4x+2(60-x)]=50x+12 600,
∵50>0,∴w隨x的增大而增大.∴當(dāng)x=40時(shí),w取得最大值,為14 600元.
答:甲車間用40箱原材料生產(chǎn)A產(chǎn)品,乙車間用20箱原材料生產(chǎn)A產(chǎn)品,可使工廠所獲利潤(rùn)最大,最大利潤(rùn)為14 600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-1,4),直線y=-x + b(b≠0) 與雙曲線y=在第二、四象限分別相交于P,Q 兩點(diǎn),與x 軸、y 軸分別相交于C,D 兩點(diǎn)
(1)求k 的值;
(2)當(dāng)b=-2 時(shí),求△OCD 的面積;
(3)連接OQ,是否存在實(shí)數(shù)b,使得S△ODQ=S△OCD? 若存在,請(qǐng)求出b 的值;若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,等邊△ABC的周長(zhǎng)為6π,半徑是1的⊙O從與AB相切于點(diǎn)D的位置出發(fā),在△ABC外部按順時(shí)針方向沿三角形滾動(dòng),又回到與AB相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了( )
A.2周 B.3周 C.4周 D.5周
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,P(m,n)是拋物線上任意一點(diǎn),是過點(diǎn)(0,﹣2)且與x軸平行的直線,過點(diǎn)P作直線PH⊥l,垂足為H, PH交x軸于Q.
(1)【探究】
(容易題)① 填空:當(dāng)m=0時(shí),OP= ,PH= ;當(dāng)m=4時(shí),OP= ,PH= ;
(中等題)② 對(duì)任意m,n,猜想OP與PH的大小關(guān)系,并證明你的猜想.
(2)【應(yīng)用】
(中等題)① 當(dāng)OP=OH,且m≠0時(shí),求P點(diǎn)的坐標(biāo);
(稍難題)②如圖2,已知線段AB=6,端點(diǎn)A,B在拋物線上滑動(dòng),求A,B兩點(diǎn)到直線l的距離之和的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com