【題目】往水平放置的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示.若油面寬AB和油的最大深度都為80cm.
(1)求油槽的半徑OA;
(2)從油槽中放出一部分油,當(dāng)剩下的油面寬度為60cm時(shí),求油面下降的高度.
【答案】(1)50cm,(2)70cm.
【解析】
(1)過O作OC⊥AB,延長CO與圓交于D,利用垂徑定理得到AC的長度,設(shè)OA為xcm,然后在Rt△OAC中利用勾股定理建立方程求解;
(2)當(dāng)油面下降到EF位置時(shí),作出圖形,連接OF,設(shè)CD與EF交于點(diǎn)G,在Rt△OGF中,利用勾股定理求出OG,則下降高度為OC+OG.
解:(1)如圖,過O作OC⊥AB,延長CO與圓交于D,
由題意可知AB=CD=80cm,
由垂徑定理可得AC=CB=AB=40cm,
設(shè)OA為xcm,則OC=(80-x)cm,
在Rt△OAC中,根據(jù)勾股定理可得:,
解得:x=50,
答:油槽的半徑OA為50cm.
(2)如圖,當(dāng)油面下降到EF位置時(shí),
∵EF∥AB,CD⊥AB,
∴CD⊥EF,
連接OF,設(shè)CD與EF交于點(diǎn)G,由題意知EF=60cm,
由垂徑定理可得GF=EF=30cm,
在Rt△OGF中,
由(1)可知OC=80-50=30cm
∴CG=OC+OG=30+40=70cm
答:油面下降的高度為70cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,M為直線l:x=a上一點(diǎn),N是直線l外一點(diǎn),且直線MN與x軸不平行,若MN為某個(gè)矩形的對(duì)角線,且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為直線l的“伴隨矩形”.如圖為直線l的“伴隨矩形”的示意圖.
(1)已知點(diǎn)A在直線l:x=2上,點(diǎn)B的坐標(biāo)為(3,﹣2)
①若點(diǎn)A的縱坐標(biāo)為0,則以AB為對(duì)角線的直線l的“伴隨矩形”的面積是 ;
②若以AB為對(duì)角線的直線l的“伴隨矩形”是正方形,求直線AB的表達(dá);
(2)點(diǎn)P在直線l:x=m上,且點(diǎn)P的縱坐標(biāo)為4,若在以點(diǎn)(2,1),(﹣2,1),(﹣2,﹣1),(2,﹣1)為頂點(diǎn)的四邊形上存在一點(diǎn)Q,使得以PQ為對(duì)角線的直線l的“伴隨矩形”為正方形,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,∠ABO=90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)C為AO的中點(diǎn),連接OD、CD.若S△OBD=3,則S△OCD為( 。
A.3B.4C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)口袋中裝有六個(gè)完全相同的小球,小球上分別標(biāo)有1,2,5,7,8,13六個(gè)數(shù),攪勻后一次從中摸出一個(gè)小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過一、二、四象限且關(guān)于x的分式方程=3x+的解為整數(shù)的概率是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 A、B 兩點(diǎn)的坐標(biāo)分別為(﹣2,0)、(0,1),⊙C 的圓心坐標(biāo)為(0,﹣1),半徑為 1,E 是⊙C 上的一動(dòng)點(diǎn),則△ABE 面積的最大值為( )
A. B. 3+ C. 3+ D. 4+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CE交AB于點(diǎn)F,且BF=BC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,E是AD邊上的一個(gè)動(dòng)點(diǎn)(有與A、D重合),以E為圓心,EA為半徑的⊙E交CE于G點(diǎn),CF與⊙E切于F點(diǎn).AD=4,AE=x,CF2=y.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)是否存在x的值,使得FG把△CEF的面積分成1:2兩部分?若存在,求出x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com