【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bxy軸交于點(diǎn)C,與x軸交于點(diǎn)A(﹣1,0),B30).

1)求這個(gè)拋物線的解析式;

2)將AOC以每秒一個(gè)單位的速度沿x軸向右平移,平移時(shí)間為t秒,平移后的AOCBOC重疊部分的面積為S,AB重合時(shí)停止平移,求St的函數(shù)關(guān)系式;

3)點(diǎn)Px軸上,連接CP,點(diǎn)B關(guān)于直線CP的對稱點(diǎn)為B,若點(diǎn)B落在這個(gè)拋物線的對稱軸上,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

【答案】(1)yx2x;(2S;(3)點(diǎn)P的坐標(biāo)為(,0

【解析】

1)將點(diǎn)A,B的坐標(biāo)代入解析式即可求得;
2)分三種情況討論,設(shè)在運(yùn)動(dòng)過程中A'C'OC于點(diǎn)H,交BC于點(diǎn)NO'C'BC于點(diǎn)M,分別用含t的代數(shù)式表示出相關(guān)線段的長度,如圖1-1,當(dāng)0t1時(shí),利用算式S=S梯形O'MCOSHNC;如圖1-2,當(dāng)1t3時(shí),利用算式S=SA'BNSBO'M;如圖1-3,當(dāng)3t4時(shí),利用算式S=SA'BN,即可以寫出結(jié)果;
3)求出拋物線的對稱軸,如圖2,過CCG⊥對稱軸于點(diǎn)G,利用軸對稱的性質(zhì)及勾股定理求出點(diǎn)B'的坐標(biāo),進(jìn)一步可求出點(diǎn)P的坐標(biāo).

(1)將點(diǎn)A(﹣1,0),B(30)代入解析式,

得,,

解得,,-

∴拋物線的解析式為:y=x2x,

(2)在y=x2x中,當(dāng)x=0時(shí),y=-,

C(0,﹣),

∴在中,,

∴∠OAC=60°,

中,,

∴∠OBC=30°,

設(shè)在運(yùn)動(dòng)過程中A'C'OC于點(diǎn)H,交BC于點(diǎn)NO'C'BC于點(diǎn)M,

如圖11,當(dāng)0t≤1時(shí),

A'O=1tOH=(1t),HC=OCOH=t,CN=CH=tHN=CN=t,

BO'=3t,O'M=BO'= (3t)=t,

S=S梯形O'MCOSHNC

=(+t)t×t×t

=t2+t;

如圖12,當(dāng)1t≤3時(shí),

A'B=4t,A'N=A'B=2t,BN=A'N=2t,BO'=3t,MO'=BO'=t,

S=SA'BNSBO'M

=(2t)(2t)﹣(3t)(t)

=﹣t2+;

如圖13,當(dāng)3t≤4時(shí),

S=SA'BN

=(2t)(2t)

=t2t+2

綜上所述,S=;

(3)在拋物線y=x2x中,

對稱軸為x=﹣=1,

如圖2,過CCG⊥對稱軸于點(diǎn)G,

CG=1

由軸對稱的性質(zhì)知,CB'=CB==2

G==,

B'(1,),

設(shè)點(diǎn)P的坐標(biāo)為(a,0),

由軸對稱的性質(zhì)知,PB=PB'

∴(3a)2=()2+(a1)2,

解得,a=,

∴點(diǎn)P的坐標(biāo)為(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)△ABC(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)的頂點(diǎn)A、C的坐標(biāo)分別為A(﹣35)、C0,3).

1)請?jiān)诰W(wǎng)格所在的平面內(nèi)畫出平面直角坐標(biāo)系,并寫出點(diǎn)B的坐標(biāo).

2)將△ABC繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△A1B1C1,畫出△A1B1C1

3)在直線y1上存在一點(diǎn)P,使PA+PC的值最小,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的圖形MN,給出如下定義:如果點(diǎn)P為圖形M上任意一點(diǎn),點(diǎn)Q為圖形N上任意一點(diǎn),那么稱線段PQ長度的最小值為圖形M,N近距離,記作 dM,N).若圖形M,N近距離小于或等于1,則稱圖形M,N互為可及圖形

1)當(dāng)⊙O的半徑為2時(shí),

①如果點(diǎn)A0,1),B3,4),那么dA,⊙O=_______,dB,⊙O= ________

②如果直線與⊙O互為可及圖形,求b的取值范圍;

2)⊙G的圓心G軸上,半徑為1,直線x軸交于點(diǎn)C,與y軸交于點(diǎn)D,如果⊙G和∠CDO互為可及圖形,直接寫出圓心G的橫坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE1米,EF0.5米,測點(diǎn)D到地面的距離DG3米,到旗桿的水平距離DC40米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動(dòng)了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五一”長假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客 萬人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計(jì)2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計(jì)有多少萬人會選擇去E景點(diǎn)旅游?

(3)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ykx+b的圖象經(jīng)過點(diǎn)(﹣22)、(3,7)且與坐標(biāo)軸相交于點(diǎn)、B兩點(diǎn).

1)求一次函數(shù)的解析式.

2)如圖,點(diǎn)P是直線AB上一動(dòng)點(diǎn),以OP為邊作正方形OPNM,連接ON、PM交于點(diǎn)Q,連BQ,當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)時(shí),的值是否會發(fā)生變化?若不變,請求出其值;若變化,請說明理由.

3)在(2)的條件下,在平面內(nèi)有一點(diǎn)H,當(dāng)以H、NB、P為頂點(diǎn)的四邊形為菱形時(shí),直接寫出點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)為,且過點(diǎn).直線軸相交于點(diǎn).

1)求該拋物線的解析式;

2)以線段為直徑的圓與射線相交于點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對直角三角板如圖放置,點(diǎn)CFD的延長線上,點(diǎn)BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長度是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與反比例函數(shù)>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.

(1)求直線AB的解析式;

(2)觀察圖象,當(dāng)時(shí),直接寫出的解集;

(3)若點(diǎn)P是軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案