【題目】如圖,已知平面直角坐標系中,ABC的頂點坐標分別A1,3),B2,1),C42).

(1)將ABC以原點O為旋轉(zhuǎn)中心旋轉(zhuǎn)180°得到△A1B1C1,畫出A1B1C1

(2)平移ABC,使點A的對應(yīng)點A2坐標為5,﹣5,畫出平移后的A2B2C2

(3)若將A1B1C1繞某一點旋轉(zhuǎn)可得到A2B2C2,請直接寫出這個點的坐標.

【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析;

【解析】

1)根據(jù)旋轉(zhuǎn)畫出相應(yīng)的圖形即可;

2)根據(jù)點A的對應(yīng)點A2坐標可知平移的距離,進而可畫出平移后的A2B2C2

3)根據(jù)旋轉(zhuǎn)的性質(zhì)確定旋轉(zhuǎn)中心即可.

解:(1)如圖所示,A1B1C1即為所求;

(2)如圖所示,A2B2C2即為所求;

(3)如圖所示,將A1B1C1繞點P2,﹣4)旋轉(zhuǎn)可得到A2B2C2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、C、D都在上,過點COB延長線于點A,連接CD,且

1)直線AC有怎樣的位置關(guān)系?為什么?

2)求由弦CDBD與弧BC所圍成的陰影部分的面積(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+bx+cx軸交于A(﹣1,0),B30)兩點.

(1)求該拋物線的解析式.

(2)一動點P在(1)中拋物線上滑動且滿足SABP=10,求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC,∠ABC=90°,頂點A在第一象限,頂點B、Cx軸的正半軸上(CB的右側(cè)),,△ADC△ABC關(guān)于AC所在的直線對稱.

1)當OB=2時,求點D的坐標.

2)若點和點在同一個反比例函數(shù)圖象上,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A1,4),B4,n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)直接寫出當x0時,的解集.

3)點Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,,將繞點順時針旋轉(zhuǎn)一定角度后,點的對應(yīng)點恰好與點重合,得到.

(1)請求出旋轉(zhuǎn)角的度數(shù);

(2)請判斷的位置關(guān)系,并說明理由;

(3),試求出四邊形的對角線的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商城某種商品平均每天可銷售20件,每件盈利30元,為慶元旦,決定進行促銷活動,經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.設(shè)該商品每件降價元,請解答下列問題

1)用含的代數(shù)式表示:

①降價后每售一件盈利  元;

②降價后平均每天售出  件;

2)在此次促銷活動中,商城若要獲得最大盈利,每件商品應(yīng)降價多少元?獲得最大盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)與y軸交于點C,與x軸交于A,B兩點,其中點B的坐標為B4,0),拋物線的對稱軸交x軸于點D,CEAB,并與拋物線的對稱軸交于點E.現(xiàn)有下列結(jié)論:①a0;②b0;③4a+2b+c0;④AD+CE4.其中所有正確結(jié)論的序號是 _____________________ 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,ABAC,∠A36°,BD為∠ABC的平分線,則的值等于___________

查看答案和解析>>

同步練習(xí)冊答案