【題目】下列命題是假命題的是(
A.兩組對(duì)邊分別相等的四邊形是平行四邊形
B.對(duì)角線相等的平行四邊形是矩形
C.對(duì)角線垂直的平行四邊形是菱形
D.四條邊相等的四邊形是正方形

【答案】D
【解析】解:A、兩組對(duì)邊分別相等的四邊形是平行四邊形,正確,是真命題; B、對(duì)角線相等的平行四邊形是矩形,正確,是真命題;
C、對(duì)角線垂直的平行四邊形是菱形,正確,是真命題;
D、四條邊相等的四邊形是正方形還可能是菱形,故原命題是假命題;
故選D.
【考點(diǎn)精析】關(guān)于本題考查的命題與定理,需要了解我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題.如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題;經(jīng)過(guò)證明被確認(rèn)正確的命題叫做定理才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式(a2x2a的解集是x<﹣1,則a的取值范圍是( 。

A. a≤2 B. a2 C. a2 D. a0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,ABC=90°,先把ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至DBE后,再把ABC沿射線平移至FEG,DE、FG相交于點(diǎn)H.

(1)判斷線段DE、FG的位置關(guān)系,并說(shuō)明理由;

(2)連結(jié)CG,求證:四邊形CBEG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程x2y+3=8,則整式x2y的值為(

A5 B10 C12 D15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC、BD是一斜坡AB上的兩幢樓房,斜坡AB的坡度是1:2,從點(diǎn)A測(cè)得樓BD頂部D處的仰角60°,從點(diǎn)B測(cè)得樓AC頂部C處的仰角30°,樓BD自身高度BD比樓AC高12米,求樓AC和樓BD之間的水平距離?(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M是ABC的邊BC的中點(diǎn),AN平分BAC,BNAN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3

(1)求證:BN=DN;

(2)求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把二次函數(shù)y=x2﹣4x+3化成y=a(x﹣h)2+k的形式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過(guò)C交x軸于E(4,0).

(1)寫(xiě)出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PFx軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過(guò)Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)求值:3y2﹣x2+2x﹣yx2+3y2),其中x=1,y=﹣2

查看答案和解析>>

同步練習(xí)冊(cè)答案