【題目】小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與圖書館的路程是4千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書館,圖中折線O-A-B-C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象回答下列問題:

1)小聰在圖書館查閱資料的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;

2)請(qǐng)你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式;

3)若設(shè)兩人在路上相距不超過(guò)0.4千米時(shí)稱為可以互相望見,則小聰和小明可以互相望見的時(shí)間共有多少分鐘?

【答案】(120,0.2;;(2s=t.;(3分鐘.

【解析】

1)由函數(shù)圖象的數(shù)據(jù)可以求出小聰在圖書館查閱資料的時(shí)間為20分鐘,由速度=路程÷時(shí)間就可以得出小聰返回學(xué)校的速度;

2)設(shè)小明離開學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式為y=kx,由待定系數(shù)法求出其解即可;

3)分類討論,當(dāng)小聰、小明同時(shí)出發(fā)后,在小聰?shù)竭_(dá)圖書館之前、當(dāng)小聰、小明在相遇之前及當(dāng)小聰、小明在相遇之后,分別求出來(lái)即可.

1)由題意,得

小聰在圖書館查閱資料的時(shí)間為20分鐘.

小聰返回學(xué)校的速度為4÷20=0.2千米/分鐘.

故答案為:200.2;

2)設(shè)小明離開學(xué)校的路程s(千米)與所經(jīng)過(guò)的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式為s=kt,由題意,得

4=60k,

解得:k=

∴所求函數(shù)表達(dá)式為s=t

3)小聰、小明同時(shí)出發(fā)后,在小聰?shù)竭_(dá)圖書館之前,兩人相距0.4千米時(shí),0.4÷0.2-=3;

當(dāng)小聰從圖書館返回時(shí):設(shè)直線BC的解析式為s=k1t+b,由題意,得

解得:

∴直線BC的函數(shù)式為:st+12

當(dāng)小聰、小明在相遇之前,剛好可以互相望見時(shí),即兩人相距0.4千米時(shí),(t+12)- t=0.4,解得t=;

當(dāng)小聰、小明在相遇之后,剛好可以互相望見時(shí),即兩人相距0.4千米時(shí),t-(t+12)=0.4,解得t=

∴所以兩人可以互相望見的時(shí)間為:-=3(分鐘)

綜上可知,兩人可以互相望見的總時(shí)間為3+3=6(分鐘).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點(diǎn)A;

(2)若AEBC,BC=2,AC=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,的中點(diǎn).沿對(duì)折至,延長(zhǎng)于點(diǎn),連接,則下列結(jié)論正確的有( )個(gè).

1 2

3的面積是18 4

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)本校初2017500名學(xué)生中中考參加體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測(cè)試成績(jī)整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問題:

(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a=

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績(jī)?cè)?/span>8分及8分以下的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】明朝的數(shù)學(xué)家程大位在《算法統(tǒng)宗》中有一道古詩(shī)趣題:甲趕群羊逐草茂,乙拽只羊隨其后,戲問甲及一百否?甲云所曰無(wú)差謬;若得這般一群羊,再添半群小半群,得你一只來(lái)方湊,玄機(jī)妙算誰(shuí)猜透?其大意是:甲趕一群羊去放,乙也牽著一只羊跟在甲的后面.乙問甲:你的這群羊有沒有一百只呢?甲說(shuō):我再得這樣的一群羊,再得這群羊的一半,還得這群羊的四分之一,最后湊上你的這只羊,正好是一百只.”問甲原有多少只羊?設(shè)甲原有x只羊,根據(jù)題意,可列方程為_________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線y=-x+與坐標(biāo)軸分別交于點(diǎn)A、B,且點(diǎn)Cx軸負(fù)半軸上,且ABAC=12

1)求A、C兩點(diǎn)的坐標(biāo);

2)若點(diǎn)M從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿射線CB運(yùn)動(dòng),連接AM,設(shè)ABM的面積為S,點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)點(diǎn)Py軸上的點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使以A、B、P、Q為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形中,,,,點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)勻速運(yùn)動(dòng),速度為,同時(shí),點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)勻速運(yùn)動(dòng),速度為,當(dāng)點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng),過(guò)點(diǎn)于點(diǎn),連接.設(shè)運(yùn)動(dòng)的時(shí)間為.

(1)當(dāng)時(shí),求的值;

(2)是否存在某一時(shí)刻,使得的面積是平行四邊形面積的?若存在,求出相應(yīng)的值;若不存在,請(qǐng)說(shuō)明理由;

(3)過(guò)點(diǎn)于點(diǎn),是否存在某一時(shí)刻,使得在線段的垂直平分線上?若存在,求出相應(yīng)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一直線分別于軸、軸交于A、B兩點(diǎn),點(diǎn)A、點(diǎn)D關(guān)于原點(diǎn)對(duì)稱,過(guò)點(diǎn)A的拋物線與射線AB交于另一點(diǎn)C,若將沿著CO所在的直線翻折得到,重疊部分的面積為.

(1)求B、D兩點(diǎn)的坐標(biāo)(用m的代數(shù)式表示).

(2)當(dāng)落在拋物線上時(shí),求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3x軸于A點(diǎn),交y軸于B點(diǎn),過(guò)AB兩點(diǎn)的拋物線y=-x2+bx+cx軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).

1)求此拋物線的解析式;

2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過(guò)點(diǎn)Px軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PGAB于點(diǎn)G.求出PFG的周長(zhǎng)最大值;

3)在拋物線y=-x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得ABMABD的面積相等?若存在,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案