【題目】△ABC中,AB=AC,DBC的中點(diǎn),以AC為腰向外作等腰直角△ACE∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G

1)若∠BAC=40°,求∠AEB的度數(shù);

2)求證:∠AEB=∠ACF;

3)求證:EF2+BF2=2AC2

【答案】1AEB=25°;(2)證明見解析;3)證明見解析.

【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)可得∠ABE=∠AEB,求出∠BAE,根據(jù)三角形內(nèi)角和定理求出即可;

(2)根據(jù)等腰三角形的性質(zhì)得出∠BAF=∠CAF,由SAS得出△BAF≌△CAF,從而得出∠ABF=∠ACF,即可得出答案;

(3)根據(jù)全等得出BF=CF,由已知得到∠CFG=∠EAG=90°,由勾股定理得出EF2+BF2=EF2+CF2=EC2, EC2=AC2+AE2=2AC2,即可得到答案.

試題解析:(1)∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,

又∵∠BAC=40°,∠EAC=90°,∴∠BAE=40°+90°=130°,∴∠AEB=(180°﹣130°)÷2=25°;

(2)∵AB=AC,D是BC的中點(diǎn),∴∠BAF=∠CAF.

在△BAF和△CAF中,∴△BAF≌△CAF(SAS),∴∠ABF=∠ACF,

∵∠ABE=∠AEB,∴∠AEB=∠ACF;

(3)∵△BAF≌△CAF,∴BF=CF,∵∠AEB=∠ACF,∠AGE=∠FGC,∴∠CFG=∠EAG=90°,

∴EF2+BF2=EF2+CF2=EC2,∵△ACE是等腰直角三角形,∴∠CAE=90°,AC=AE,

∴EC2=AC2+AE2=2AC2,即EF2+BF2=2AC2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一列有理數(shù)-1,2-3,4,-5,6,,按如圖所示有序數(shù)列,則2018應(yīng)排在(

A.B位置B.C位置C.D位置D.E位置

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔABC中,∠ABC與∠ACB的平分線交于點(diǎn)I,根據(jù)下列條件,求∠BIC的度數(shù)。

①若∠ABC40°,∠ACB60°,則∠BIC______°;

②若∠ABC+∠ACB100°,則∠BIC=___________°;

③若∠A80°,則∠BIC_______°;

④從上述計(jì)算中,我們能發(fā)現(xiàn)已知∠A=x,則∠BIC_______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).

1)如圖1,當(dāng)點(diǎn)E在邊DC上自DC移動(dòng),同時(shí)點(diǎn)F在邊CB上自CB移動(dòng)時(shí),連接AEDF交于點(diǎn)P,請(qǐng)你寫出AEDF的數(shù)量關(guān)系和位置關(guān)系,并說明理;

2)如圖2,當(dāng)EF分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答,不需證明);連接AC,求ACE為等腰三角形時(shí)CECD的值;

3)如圖3,當(dāng)E,F分別在直線DC,CB上移動(dòng)時(shí),連接AEDF交于點(diǎn)P,由于點(diǎn)EF的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.AD=2,試求出線段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC的頂點(diǎn)Ax軸上;∠COA=∠B=60°,且CB∥OA

1)求證,四邊形OABC是平行四邊形.

2)若A的坐標(biāo)為(8,0),OC長(zhǎng)為6,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOOM,OA=8,點(diǎn)B為射線OM上的一個(gè)動(dòng)點(diǎn),分別以OB,AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰RtOBF、等腰RtABE,連接EFOMP點(diǎn),當(dāng)點(diǎn)B在射線OM上移動(dòng)時(shí),PB的長(zhǎng)度為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:如圖所示是每一個(gè)小方格都是邊長(zhǎng)為1的正方形網(wǎng)格,

(1)利用網(wǎng)格線作圖:

①在上找一點(diǎn)P,使點(diǎn)P的距離相等;

②在射線上找一點(diǎn)Q,使.

(2)(1)中連接,試說明是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是關(guān)于的方程的一個(gè)實(shí)數(shù)根,并且這個(gè)方程的兩個(gè)實(shí)數(shù)根恰好是等腰三角形的兩條邊長(zhǎng),則的周長(zhǎng)為(

A. 6 B. 8 C. 10 D. 8或10

查看答案和解析>>

同步練習(xí)冊(cè)答案