【題目】在△ABC中,AB=AC,D是BC的中點(diǎn),以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G.
(1)若∠BAC=40°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)求證:EF2+BF2=2AC2.
【答案】(1)∠AEB=25°;(2)證明見解析;(3)證明見解析.
【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)可得∠ABE=∠AEB,求出∠BAE,根據(jù)三角形內(nèi)角和定理求出即可;
(2)根據(jù)等腰三角形的性質(zhì)得出∠BAF=∠CAF,由SAS得出△BAF≌△CAF,從而得出∠ABF=∠ACF,即可得出答案;
(3)根據(jù)全等得出BF=CF,由已知得到∠CFG=∠EAG=90°,由勾股定理得出EF2+BF2=EF2+CF2=EC2, EC2=AC2+AE2=2AC2,即可得到答案.
試題解析:(1)∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,
又∵∠BAC=40°,∠EAC=90°,∴∠BAE=40°+90°=130°,∴∠AEB=(180°﹣130°)÷2=25°;
(2)∵AB=AC,D是BC的中點(diǎn),∴∠BAF=∠CAF.
在△BAF和△CAF中,∴△BAF≌△CAF(SAS),∴∠ABF=∠ACF,
∵∠ABE=∠AEB,∴∠AEB=∠ACF;
(3)∵△BAF≌△CAF,∴BF=CF,∵∠AEB=∠ACF,∠AGE=∠FGC,∴∠CFG=∠EAG=90°,
∴EF2+BF2=EF2+CF2=EC2,∵△ACE是等腰直角三角形,∴∠CAE=90°,AC=AE,
∴EC2=AC2+AE2=2AC2,即EF2+BF2=2AC2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,,按如圖所示有序數(shù)列,則2018應(yīng)排在( )
A.B位置B.C位置C.D位置D.E位置
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ΔABC中,∠ABC與∠ACB的平分線交于點(diǎn)I,根據(jù)下列條件,求∠BIC的度數(shù)。
①若∠ABC=40°,∠ACB=60°,則∠BIC=______°;
②若∠ABC+∠ACB=100°,則∠BIC=___________°;
③若∠A=80°,則∠BIC=_______°;
④從上述計(jì)算中,我們能發(fā)現(xiàn)已知∠A=x,則∠BIC=_______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).
(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時(shí)CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC的頂點(diǎn)A在x軸上;∠COA=∠B=60°,且CB∥OA.
(1)求證,四邊形OABC是平行四邊形.
(2)若A的坐標(biāo)為(8,0),OC長(zhǎng)為6,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AO⊥OM,OA=8,點(diǎn)B為射線OM上的一個(gè)動(dòng)點(diǎn),分別以OB,AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點(diǎn),當(dāng)點(diǎn)B在射線OM上移動(dòng)時(shí),PB的長(zhǎng)度為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:如圖所示是每一個(gè)小方格都是邊長(zhǎng)為1的正方形網(wǎng)格,
(1)利用網(wǎng)格線作圖:
①在上找一點(diǎn)P,使點(diǎn)P到和的距離相等;
②在射線上找一點(diǎn)Q,使.
(2)在(1)中連接與,試說明是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是關(guān)于的方程的一個(gè)實(shí)數(shù)根,并且這個(gè)方程的兩個(gè)實(shí)數(shù)根恰好是等腰三角形的兩條邊長(zhǎng),則的周長(zhǎng)為( )
A. 6 B. 8 C. 10 D. 8或10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com