【題目】某市中學(xué)生舉行足球聯(lián)賽,共賽了17輪(即每隊(duì)均需參賽17場(chǎng)),記分辦法是勝-場(chǎng)得3分。平場(chǎng)得1分,負(fù)一場(chǎng)得0分.
(1)在這次足球賽中,若小虎足球隊(duì)踢平場(chǎng)數(shù)與踢負(fù)場(chǎng)數(shù)相同,共積16分,求該隊(duì)勝了幾場(chǎng);
(2)在這次足球賽中,若小虎足球隊(duì)總積分仍為16分,且踢平場(chǎng)數(shù)是踢負(fù)場(chǎng)數(shù)的整數(shù)倍,試推算小虎足球隊(duì)踢負(fù)場(chǎng)數(shù)的情況有幾種,
【答案】(1)該球隊(duì)勝了3場(chǎng);(2)小虎足球隊(duì)負(fù)的場(chǎng)數(shù)可能是1, 5,7場(chǎng).
【解析】
(1)根據(jù)題意列出二元一次方程組解得即可得出答案
(2)根據(jù)題意,可以把整數(shù)倍用k倍來表示,列出三元一次方程組,并將負(fù)的場(chǎng)數(shù)用k表示出來,根據(jù)k為正整數(shù),負(fù)的場(chǎng)數(shù)也為非負(fù)整數(shù),分析即可得出結(jié)果
(1)(1)設(shè)小虎足球隊(duì)勝了x場(chǎng),平了y場(chǎng),負(fù)了y場(chǎng),依題意得
解得
(2)(2)設(shè)小虎足球隊(duì)勝了x場(chǎng),平了y場(chǎng),負(fù)了z場(chǎng),依題意得,
把③代入①②得
解得 (k為整數(shù)).
又∵z為正整數(shù),
∴當(dāng)時(shí),:
當(dāng)時(shí),;
當(dāng)時(shí),.
即:小虎足球隊(duì)踢負(fù)場(chǎng)數(shù)的情況有三種
①負(fù)7場(chǎng);②負(fù)5場(chǎng);③負(fù)1場(chǎng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有九張背面一模一樣的撲克牌,正面分別為:紅桃A、紅桃2、紅桃3、紅桃4、黑桃A、黑桃2、黑桃3、黑桃4、黑桃5.
(1)現(xiàn)將這九張撲克牌混合均勻后背面朝上放置,若從中摸出一張,求正面寫有數(shù)字3的概率是多少?
(2)現(xiàn)將這九張撲克牌分成紅桃和黑桃兩部分后背面朝上放置,并將紅桃正面數(shù)字記作m,黑桃正面數(shù)字記作n,若從黑桃和紅桃中各任意摸一張,求關(guān)于x的方程mx2+3x+=0有實(shí)根的概率.(用列表法或畫樹形圖法解,A代表數(shù)字1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線,點(diǎn)為平面內(nèi)一點(diǎn),連接與.
(1)如圖1,點(diǎn)在直線、之間,若,,求的度數(shù).
(2)如圖2,點(diǎn)在直線、之間,與的角平分線相交于點(diǎn),寫出與之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點(diǎn)在直線下方,與的角平分線相交于點(diǎn),直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:
對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J. Nplcr,1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707-1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.
對(duì)數(shù)的定義:一般地,若,那么叫做以為底的對(duì)數(shù),記作:.比如指數(shù)式可以轉(zhuǎn)化為,對(duì)數(shù)式可以轉(zhuǎn)化為.
我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):;理由如下:
設(shè),,則,
∴,由對(duì)數(shù)的定義得
又∵
∴
解決以下問題:
(1)將指數(shù)轉(zhuǎn)化為對(duì)數(shù)式______;
(2)證明
(3)拓展運(yùn)用:計(jì)算______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線交于點(diǎn)E,點(diǎn)E的橫坐標(biāo)為3.
(1)直接寫出b值:___;
(2)在y軸上有一點(diǎn)M,使得△ABM是等腰三角形,直接寫出所有可能的點(diǎn)M的坐標(biāo): ;
(3)在x軸上有一點(diǎn)P(m,0),過點(diǎn)P作x軸的垂線,與直線交于點(diǎn)C,與直線交于點(diǎn)D,若CD=2OB,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,一蔬菜經(jīng)營(yíng)戶用90元錢從蔬菜批發(fā)市場(chǎng)批了西紅柿和豆角共40kg到菜市場(chǎng)去賣,西紅柿和豆角這天的批發(fā)價(jià)與零售價(jià)如下表所示:
品名 | 西紅柿 | 豆角 |
批發(fā)價(jià)(單位:元/kg) | 2.5 | 1.5 |
零售價(jià)(單位:元/kg) | 3.5 | 2.8 |
問:(1)西紅柿和豆角的重量各是多少?(列二元一次方程組求解)
(2)他當(dāng)天賣完這些西紅柿和豆角能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F是矩形ABCD邊BC上的兩點(diǎn),AF=DE.
(1)求證:BE=CF;
(2)若∠1=∠2=30°,AB=5,FC=2,求矩形ABCD的面積(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:
A | B | |
進(jìn)價(jià)(萬元/套) | 1.5 | 1.2 |
售價(jià)(萬元/套) | 1.65 | 1.4 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤(rùn)9萬元。
(毛利潤(rùn)=(售價(jià) - 進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購(gòu)進(jìn)數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=7cm,CD=5cm,P、Q兩點(diǎn)分別從B、C兩點(diǎn)同時(shí)出發(fā),沿矩形ABCD的邊以1cm/s的速度逆時(shí)針運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng).當(dāng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為_s時(shí),△PQC為等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com