【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,在所給網(wǎng)格中按下列要求畫(huà)出圖形:
(1)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn))上,畫(huà)一條線(xiàn)段AB,長(zhǎng)度為,且點(diǎn)B在格點(diǎn)上;
(2)以上題中所畫(huà)線(xiàn)段AB為一邊,另外兩條邊長(zhǎng)分別是3,,畫(huà)一個(gè)三角形ABC,使點(diǎn)C在格點(diǎn)上(只需畫(huà)出符合條件的一個(gè)三角形);
(3)所畫(huà)的三角形ABC的AB邊上高線(xiàn)長(zhǎng)為_________(直接寫(xiě)出答案)
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】
(1)根據(jù)勾股定理可知使線(xiàn)段AB為直角邊為2和1的直角三角形的斜邊即可;
(2)作出另外兩條邊長(zhǎng)分別是3,,的三角形ABC即可;
(3)根據(jù)三角形的面積公式即可得到所畫(huà)的三角形ABC的AB邊上高線(xiàn)長(zhǎng).
(1)如圖所示:
(2)如圖所示:
(3)三角形ABC的AB邊上高線(xiàn)長(zhǎng)為:.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:
(1)①畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
②畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2;
(2)點(diǎn)C1的坐標(biāo)是;點(diǎn)C2的坐標(biāo)是;
(3)試判斷:△A1B1C1與△A2B2C2是否關(guān)于x軸對(duì)稱(chēng)?(只需寫(xiě)出判斷結(jié)果) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題提出】 學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿(mǎn)足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類(lèi),可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) , 可以知道Rt△ABC≌Rt△DEF. 第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF. 第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫(xiě)作法,保留作圖痕跡)
(4)∠B還要滿(mǎn)足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫(xiě)出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 , 則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,則△DEB的周長(zhǎng)為___cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市啟動(dòng)了第二屆“美麗港城,美在閱讀”全民閱讀活動(dòng),為了解市民每天的閱讀時(shí)間情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制如下尚不完整的頻數(shù)分布表:
閱讀時(shí)間 | 0≤x<30 | 30≤x<60 | 60≤x<90 | x≥90 | 合計(jì) |
頻數(shù) | 450 | 400 | 50 | ||
頻率 | 0.4 | 0.1 | 1 |
(1)補(bǔ)全表格;
(2)將每天閱讀時(shí)間不低于60min的市民稱(chēng)為“閱讀愛(ài)好者”,若我市約有500萬(wàn)人,請(qǐng)估計(jì)我市能稱(chēng)為“閱讀愛(ài)好者”的市民約有多少萬(wàn)人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(7,0),C(0,4),點(diǎn)D的坐標(biāo)為(5,0),點(diǎn)P在BC邊上運(yùn)動(dòng). 當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),直線(xiàn)y= x+4的圖象與該二次函數(shù)的圖象交于點(diǎn)A(m,8),直線(xiàn)與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.
(1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
(2)P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A,B不重合),過(guò)P作x軸的垂線(xiàn)與這個(gè)二次函數(shù)的圖象的交于點(diǎn)D,與x軸交于點(diǎn)E,設(shè)線(xiàn)段PD長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)在(2)的條件下,在線(xiàn)段AB上是否存在點(diǎn)P.使得以點(diǎn)P,E,B為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫(xiě)P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com