【題目】 “蘑菇石”是我省著名自然保護區(qū)梵凈山的標(biāo)志,小明從山腳B點先乘坐纜車到達觀景平臺DE觀景,然后再沿著坡腳為29°的斜坡由E點步行到達“蘑菇石”A點,“蘑菇石”A點到水平面BC的垂直距離為1790m.如圖,DEBC,BD=1700m,DBC=80°,求斜坡AE的長度.(結(jié)果精確到0.1m)

【答案】238.9m

【解析】

試題分析:首先過點D作DFBC于點F,延長DE交AC于點M,進而表示出AM,DF的長,再利用AE=,求出答案.

試題解析:過點D作DFBC于點F,延長DE交AC于點M,由題意可得:EMAC,DF=MC,AEM=29°,在RtDFB中,sin80°=,則DF=BDsin80°,AM=AC﹣CM=1790﹣1700sin80°,在RtAME中,sin29°=,故AE==238.9(m)

答:斜坡AE的長度約為238.9m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A在反比例函數(shù)y=x > 0)的圖象上,作ABy軸于B.

(1) ABO的面積為 .

(2) 若點A的橫坐標(biāo)為4,點Px軸的正半軸.且△OAP是等腰三角形,求點P的坐標(biāo): .

(3)動點M從原點出發(fā),沿x軸的正方向運動,以MA為直角邊,在MA的右側(cè)作等腰RtMAN=90°,若在點M運動過程中,斜邊MN始終在x軸上,求ON-OM的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點,在y軸上有一點N0,4),動點MA點以每秒1個單位的速度勻速沿x軸向左移動.

1)點A的坐標(biāo):_____;點B的坐標(biāo):_____;

2)求NOM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)在y軸右邊,當(dāng)t為何值時,NOMAOB,求出此時點M的坐標(biāo);

4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求作圖:已知A(﹣2,1),B(﹣12),C(﹣34).

1)畫出與三角形ABC關(guān)于y軸對稱的三角形A1B1C1;

2)將三角形A1B1C1先向右平移2個單位,再向下平移1個單位,得到三角形A2B2C2,則三角形A2B2C2頂點坐標(biāo)分別為:A2   B2   C2   ;

3)若點Pa-1b+2)與點A關(guān)于x軸對稱,則a=   b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB20m,水位上升3m就達到警戒線CD,這是水面寬度為10m。

1)在如圖的坐標(biāo)系中求拋物線的解析式。

(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個頂點的坐標(biāo)分別為,,

)請畫出將向左平移個單位長度后得到的圖形

)請畫出關(guān)于原點成中心對稱的圖形

)在軸上找一點,使的值最小,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】桌面上放有張卡片,正面分別標(biāo)有數(shù)字,,.這些卡片除數(shù)字外完全相同,把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍反面朝上放回洗勻,乙也從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.

請用列表或畫樹狀圖的方法求兩數(shù)之和為的概率;

若甲與乙按上述方式做游戲,當(dāng)兩數(shù)之和為時,甲勝;當(dāng)兩數(shù)之和不為時,則乙勝.若甲勝一次得分,誰先達到分為勝.那么乙勝一次得多少分,這個游戲?qū)﹄p方公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC.若AB=8,CD=2,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(2,0),B(0,﹣6)兩點,

(1)求這個二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案