【題目】如圖,在四邊形ABCD中,∠C72°,∠B=∠D90°,E,F分別是DC,BC上的點,當AEF的周長最小時,∠EAF的度數(shù)為_____

【答案】36°.

【解析】

據(jù)要使△AEF的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關于BCCD的對稱點A′,A″,即可得出∠AA′F+A″=72°,即可得出答案.

A關于BCCD的對稱點A,A,連接AA,交BCE,交CDF,則AA即為AEF的周長最小值.

∵∠C72°

∴∠DAB108°,

∴∠AAF+A72°,

∵∠FAA=∠FAA,∠EAD=∠A,

∴∠FAA+AAE72°

∴∠EAE108°72°36°,

故答案為36°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】日零時起,高鐵開通,某旅行社為吸引廣大市民組團去仙都旅游,推出了如下收費標準:如果人數(shù)不超過人,人均旅游費用為元,如果人數(shù)超過人,每增加人,人均旅游費用降低元,但人均旅游費用不得低于元.

如果某單位組織人參加仙都旅游,那么需支付旅行社旅游費用________元;

現(xiàn)某單位組織員工去仙都旅游,共支付給該旅行社旅游費用元,那么該單位有多少名員工參加旅游?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某手機經(jīng)銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600

(1) 求甲、乙型號手機每部進價為多少元?

(2) 該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺,請問有幾種進貨方案?請寫出進貨方案

(3) 售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1280為了促銷,公司決定每售出一臺乙型號手機,返還顧客現(xiàn)金m元,而甲型號手機售價不變,要使(2)中所有方案獲利相同,求m的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個矩形ABCD的較短邊長為2.

(1)如圖①,若沿長邊對折后得到的矩形與原矩形相似,求它的另一邊長;

(2)如圖②,已知矩形ABCD的另一邊長為4,剪去一個矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y1=k(x-1)與一次函數(shù)y2=-k(x-3)的圖像交于點P,其中k≠0.

1)求點P的橫坐標.

2)點Aa,y)和點Bb,y)分別在y1y2的圖像上,若a=5,b的值.

3)點C(x,m)和點Dx,n)分別在y1y2的圖像上,若m-nk,當k0時,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊三角形ABC,點DBC上,點EAG的延長線上,DEDA(如圖1).

1)求證:∠BAD=∠EDC;

2)如圖2,若點E關于直線BC的對稱點為M,連DM,AM,請判斷ADM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC與BD交于點O,ABC:BAD=1:2,BEAC,CEBD.

1求tanDBC的值;

2求證:四邊形OBEC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家實行計劃用水,厲行節(jié)約用水”“水是生命之源;水資源緊缺形勢嚴峻,保護水資源刻不容緩。為鼓勵市民節(jié)約用水,某市自來水公司對單位和個人分別采取一定措施按用水量分段計水價收費,該市自來水公司針對單位用水規(guī)定用水計劃:每月單位計劃用水標準為3000噸,計劃內用水每噸收費0.5元,超計劃部分每噸按0.8元收費.

1)寫出單位水費y(元)與每月用水量x(噸)之間的函數(shù)關系式:

用水量小于等于3000噸時,_______________________________;

用水量大于3000噸時,___________________________.

2)九月份甲單位用水3200噸,水費是_____________元;乙單位用水2800噸電,水費_______.

3)若十月份乙單位繳納水費1540元,則該單位用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,按以下步驟作圖:①分別以、為圓心,大于的長為半徑畫弧,兩弧交于點、;②作直線于點,連接,若,則下列結論中不一定成立的是(

A.B.是等邊三角形

C.DAB的中點D.

查看答案和解析>>

同步練習冊答案