(2004•本溪)已知,兩圓半徑分別為4cm和2cm,圓心距為10cm,則兩圓的內(nèi)公切線的長為    cm.
【答案】分析:首先判斷兩圓的位置關(guān)系,把內(nèi)公切線和兩半徑聯(lián)系在一個三角形中,然后解三角形求出邊長.
解答:解:∵AB是兩圓半徑分別為4cm和2cm,圓心距為10cm,
∴兩圓相離,
故兩圓內(nèi)公切線l==8.
點評:本題主要考查圓與圓的位置關(guān)系,外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內(nèi)切,則P=R-r;內(nèi)含,則P<R-r.
(P表示圓心距,R,r分別表示兩圓的半徑).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年遼寧省部分市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2004•本溪)已知圓O的直徑為6cm,如果直線l上的一點C到圓心O的距離為3cm,則直線l與圓O的位置關(guān)系是   

查看答案和解析>>

同步練習(xí)冊答案