【題目】實驗室里,水平桌面上有甲、乙兩個圓柱形容器(容器足夠高),底面半徑之比為1∶2,用一個管子在甲、乙兩個容器的15厘米高度處連通(即管子底端離容器底15厘米).已知只有乙容器中有水,水位高2厘米,如圖所示.現(xiàn)同時向甲、乙兩個容器注水,平均每分鐘注入乙容器的水量是注入甲容器水量的k倍.開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均為正整數(shù),當(dāng)甲、乙兩個容器的水位都到達連通管子的位置時,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,設(shè)注水時間為t分鐘.
(1)求k的值(用含a的代數(shù)式表示).
(2)當(dāng)甲容器的水位第一次比乙容器的水位高1厘米時,求t的值.
(3)當(dāng)甲容器的水位第二次比乙容器的水位高1厘米時,求a,k,t的值.
【答案】(1)(或);
(2);
(3)
【解析】(1)根據(jù)“開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米”,即可得出a、k之間的關(guān)系式,變形后即可得出結(jié)論;
(2)根據(jù)兩容器水位間的關(guān)系列出a、k、t的代數(shù)式,將(1)的結(jié)論代入其內(nèi)整理后即可得出結(jié)論;
(3)由(1)中的k=4﹣結(jié)合a、k均為正整數(shù)即可得出a、k的值,經(jīng)檢驗后可得出a、k值合適,再將乙容器內(nèi)水位上升的高度轉(zhuǎn)換成甲容器內(nèi)水位上升的高度結(jié)合水位上升的總高度=單位時間水位上升的高度×注水時間即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
解:(1)由題意,得,∴(或)
(2)由題意,得,把代入,
得,化簡,得.
(3)∵,a,k均為正整數(shù),∴,或
又∵, ,∴,或符合題意.
①時, ,解得, .
∴.
②當(dāng)時, ,解得, .
∴.
“點睛”本題考查了一元一次方程中的應(yīng)用以及列代數(shù)式,根據(jù)兩容器半徑及注水量的關(guān)系列出代數(shù)式是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極創(chuàng)建全國文明城市,某市對某路口的行人交通違章情況進行了 天的調(diào)查,將所得數(shù)據(jù)繪制成如下統(tǒng)計圖(圖2不完整):
請根據(jù)所給信息,解答下列問題:
(1)第 天,這一路口的行人交通違章次數(shù)是多少次?這 天中,行人交通違章 次的有多少天?
(2)請把圖2中的頻數(shù)直方圖補充完整;
(3)通過宣傳教育后,行人的交通違章次數(shù)明顯減少.經(jīng)對這一路口的再次調(diào)查發(fā)現(xiàn),平均每天的行人交通違章次數(shù)比第一次調(diào)查時減少了 次,求通過宣傳教育后,這一路口平均每天還出現(xiàn)多少次行人的交通違章?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,在BC上分別取點M、N,使MN=NA,若∠BAM=∠NAC,則∠MAC=_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級教師對試卷講評課中學(xué)生參與情況進行調(diào)查,調(diào)查項目分為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.調(diào)查組隨機抽取了若干名初中學(xué)生的參與情況,繪制了如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為______度;
(2)請將頻數(shù)分布直方圖補充完整;
(3)如果全市有6000名初三學(xué)生,那么在試卷評講課中,“獨立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點對應(yīng)的有理數(shù)分別為xA=﹣5和xB=6,動點P從點A出發(fā),以每秒1個單位的速度沿數(shù)軸在A,B之間往返運動,同時動點Q從點B出發(fā),以每秒2個單位的速度沿數(shù)軸在B,A之間往返運動.設(shè)運動時間為t秒.
(1)當(dāng)t=2時,點P對應(yīng)的有理數(shù)xP=______,PQ=______;
(2)當(dāng)0<t≤11時,若原點O恰好是線段PQ的中點,求t的值;
(3)我們把數(shù)軸上的整數(shù)對應(yīng)的點稱為“整點”,當(dāng)P,Q兩點第一次在整點處重合時,直接寫出此整點對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某收費站在2小時內(nèi)對經(jīng)過該站的機動車統(tǒng)計如下:
類型 | 轎車 | 貨車 | 客車 | 其他 |
數(shù)量(輛) | 36 | 24 | 8 | 12 |
若有一輛機動車將經(jīng)過這個收費站,利用上面的統(tǒng)計估計它是轎車的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,現(xiàn)從其余的小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的概率是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com