【題目】如圖,⊙O的半徑為1,弦AB=BC=,AB,BC在圓心O的兩側(cè),弧AC上有一動點D,AEBD于點E,當點D從點C運動到點A時,則點E所經(jīng)過的路徑長為__________

【答案】

【解析】

如圖,連接OA,OB,作OHBCH,AQBCQ,取AB的中點K,連接KQ.點E的運動軌跡是圖中的紅線,求出圓心角∠AKQ即可解決問題.

解:如圖,連接OA,OB,作OHBCH,AQBCQ,取AB的中點K,連接KQ

OHBC,

BH=CH=,

cosOBH=

∴∠OBH=30°,

AB=,OA=OB=1

AB2=OA2+OB2,

∴∠AOB=90°

∴∠ABO=OAB=45°,

∴∠ABC=75°

∵∠AQB=90°,AK=KB

KB=KO,

∴∠KBQ=KQB=75°,

∴∠AKQ=KBQ+KQB=150°,

∵點E的運動軌跡是圖中的紅線,

∴點E所經(jīng)過的路徑長=
故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,AC相交于點ONAO的中點,點MBC邊上,POD的中點,過點PPMBC于點M,交于點N′,則PN-MN′的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙OBD是⊙O的直徑,AECDCD的延長線于點E,DA平分∠BDE

⑴求證:AE是⊙O的切線;

⑵若AE4cm,CD6cm,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習圓的對稱性時知道結論:垂直于弦的直徑一定平分這條弦,請嘗試解決問題:如圖,在RtACB中,∠ACB90°,圓OACB的外接圓.點D是圓O上一點,過點DDEBC,垂足為E,且BD平分∠ABE,

1)判斷直線ED與圓O的位置關系,并說明理由.

2)若AC12,BC5,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB4,∠ADN60°,點EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N.連接MDAN,

(1)求證:四邊形AMDN是平行四邊形;

(2)填空:

①當AM的值為_____時,四邊形AMON是矩形;

②當AM的值為______時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,EBC邊的中點,P在射線AD,PPFAEF.

(1)求證:;

(2)當點P在射線AD上運動時,PA=X,是否存在實數(shù)x,使以P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4AD6,EAB邊的中點,F是線段BC上的動點,將△EBF沿EF所在直線折疊得到△EBF,連接ED,則DE的長度是_____,BD的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為了提高學生跳遠科目的成績,對全校500名九年級學生開展了為期一個月的跳遠科目強化訓練。王老師為了了解學生的訓練情況,強化訓練前,隨機抽取了該年級部分學生進行跳遠測試,經(jīng)過一個月的強化訓練后,再次測得這部分學生的跳遠成績,將兩次測得的成績制作成圖所示的統(tǒng)計圖和不完整的統(tǒng)計表(滿分10,得分均為整數(shù)).

根據(jù)以上信息回答下列問題:

(1)訓練后學生成績統(tǒng)計表中,并補充完成下表:

(2)若跳遠成績9分及以上為優(yōu)秀,估計該校九年級學生訓練后比訓練前達到優(yōu)秀的人數(shù)增加了多少?

(3)經(jīng)調(diào)查,經(jīng)過訓練后得到9分的五名同學中,有三名男生和兩名女生,王老師要從這五名同學中隨機抽取兩名同學寫出訓練報告,請用列表或畫樹狀圖的方法,求所抽取的兩名同學恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點O. AE與DC交于點M,BD與AC交于點N.

(1)如圖①,求證:AE=BD;

(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖②中四對全等的直角三角形.

查看答案和解析>>

同步練習冊答案