【題目】如圖,AB是圓O的一條直徑,弦CD垂直于AB,垂足為點(diǎn)G、E是劣弧BD上一點(diǎn),點(diǎn)E處的切線與CD的延長(zhǎng)線交于點(diǎn)P,連接AE,交CD于點(diǎn)F.
(1)求證:PE=PF
(2)已知AG=4,AF=5,EF=25,求圓O的直徑.
【答案】(1)PE=PF;(2)圓O的直徑為.
【解析】試題分析:(1)如圖1,連接OE,根據(jù)切線的性質(zhì)得出∠PEO=90°,求出∠PEF=∠PFE,根據(jù)等腰三角形的判定得出即可;
(2)如圖2,連接BE,根據(jù)相似三角形的判定得出△AGF∽△AEB,得出比例式,代入求出即可.
試題解析:(1)證明:如圖1,連接OE,
∵EP是⊙O的切線,
∴∠PEO=90°,
∴∠OEA+∠PEF=90°,
∵AB⊥CD,
∴∠AGF=90°,
∴∠A+∠AFG=90°,
∵OE=OA,
∴∠OEA=∠OAE,
∴∠PEF=∠AFG,
∵∠EFP=∠AFG,
∴∠PEF=∠PFE,
∴PE=PF;
(2)解:如圖2,連接BE,
∵AB為直徑,
∴∠AEB=90°,
∵∠AGF=90°,
∴∠AGF=∠AEB,
∵∠A=∠A,
∴△AGF∽△AEB,
∴,
∵AG=4,AF=5,EF=25,
∴,
∴AB=,
即圓O的直徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a>-2,若當(dāng)1≤x≤2時(shí),函數(shù)y= (a≠0)的最大值與最小值之差是1,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.
(1)從小剛家到該景區(qū)乘車一共用了多少時(shí)間?
(2)求線段AB對(duì)應(yīng)的函數(shù)解析式;
(3)小剛一家出發(fā)2.5小時(shí)時(shí)離目的地多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(x﹣2)(x﹣3)=m有實(shí)數(shù)根x1、x2,且x1<x2,則下列結(jié)論中錯(cuò)誤的是( ).
A. 當(dāng)m=0時(shí),x1=2,x2=3
B. m>﹣
C. 當(dāng)m>0時(shí),2<x1<x2<3
D. 二次函數(shù)y=(x﹣x1)(x﹣x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點(diǎn)O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖3,直線AB、CD相交于O,若∠AOD比∠AOC大40°,則∠BOD=___°;若∠AOD=2∠AOC,則∠BOC=___;若∠AOD=∠AOC,則∠BOD=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖形,回答下列各題:
(1)圖A中,共有____對(duì)對(duì)頂角;
(2)圖B中,共有____對(duì)對(duì)頂角;
(3)圖C中,共有____對(duì)對(duì)頂角;
(4)探究(1)--(3)各題中直線條數(shù)與對(duì)頂角對(duì)數(shù)之間的關(guān)系,若有n條直線相交于一點(diǎn),則可形成________對(duì)對(duì)頂角;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A.經(jīng)過半徑的端點(diǎn)并且垂直于這條半徑的直線是這個(gè)圓的切線
B.平分弦的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
C.90°的圓周角所對(duì)的弦是直徑
D.如果兩個(gè)圓周角相等,那么它們所對(duì)的弦相等.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com