【題目】如圖,已△ABC中,AB=AC=12厘米(可得出∠B=∠C),BC=9厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米/秒的速度由B向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,1秒鐘時(shí),△BPD與△CQP是否全等,請(qǐng)說(shuō)明;
(2)點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD≌△CPQ?
【答案】(1)△BPD≌△CQP,理由見(jiàn)解析;(2)4厘米/秒
【解析】
在(1)中時(shí)間固定,速度固定,則BP,CQ的長(zhǎng)度也固定,則可以判斷出CP和BD的關(guān)系,再根據(jù)全等的判定,判斷全等即可,(2)中因?yàn)樗俣炔幌嗟,則CQ≠BP,而需要兩三角形全等則必須滿足BD=CQ,BP=CP,則可以算出時(shí)間和速度了.
解:(1)∵t=1(秒),
∴BP=CQ=3(厘米)
∵AB=12,D為AB中點(diǎn),
∴BD=6(厘米)
又∵PC=BC-BP=9-3=6(厘米)
∴PC=BD
∵AB=AC,
∴∠B=∠C,
在△BPD與△CQP中,
∴△BPD≌△CQP(SAS),
(2)∵VP≠VQ ,
∴BP≠CQ,
又∵∠B=∠C,
要使△BPD≌△CPQ,只能BP=CP=4.5,
∵△BPD≌△CPQ,
∴CQ=BD=6.
∴點(diǎn)P的運(yùn)動(dòng)時(shí)間: (秒),此時(shí) (厘米/秒).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個(gè)外角.
實(shí)驗(yàn)與操作:根據(jù)要求進(jìn)行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫(xiě)作法)
(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF
探究與猜想:若∠BAE=36°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個(gè)過(guò)程中,跑步者距起跑線的距離y(單位:m)與跑步時(shí)間t(單位:s)的對(duì)應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度
C. 小蘇前15s跑過(guò)的路程大于小林前15s跑過(guò)的路程
D. 小林在跑最后100m的過(guò)程中,與小蘇相遇2次
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校八年級(jí)某班舉行演講比賽,決定購(gòu)買(mǎi),兩種筆記本作為獎(jiǎng)品,已知,兩種筆記本的單價(jià)分別是元和元.根據(jù)比賽設(shè)獎(jiǎng)情況,需購(gòu)買(mǎi)筆記本共本.
(1)如果購(gòu)買(mǎi)獎(jiǎng)品共花費(fèi)了元,這兩種筆記本各買(mǎi)了多少本?
(2)根據(jù)比賽設(shè)獎(jiǎng)情況,決定所購(gòu)買(mǎi)的種筆記本的數(shù)量不少于種筆記本數(shù)量,但又不多于種筆記本數(shù)量的倍.設(shè)買(mǎi)種筆記本本,買(mǎi)兩種筆記本的總費(fèi)為元.
①寫(xiě)出(元)關(guān)于(本)的函數(shù)關(guān)系式,并求出自變量的取值范圍;
②購(gòu)買(mǎi)這兩種筆記本各多少本時(shí),花費(fèi)最少?最少的費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新定義運(yùn)算“◎”,對(duì)于任意有理數(shù)a、b,都有a◎b=a2﹣ab+b﹣1,例如:3◎5=32﹣3×5+5﹣1=﹣2,若任意投擲一枚印有數(shù)字1~6的質(zhì)地均勻的骰子,將朝上的點(diǎn)數(shù)作為x的值,則代數(shù)式(x﹣3)◎(3+x)的值為非負(fù)數(shù)的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)物學(xué)家通過(guò)大量的調(diào)查估計(jì)出,某種動(dòng)物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動(dòng)物活到25歲的概率為多少?現(xiàn)年25歲的這種動(dòng)物活到30歲的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CE是ABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CE與DA的延長(zhǎng)線交于點(diǎn)E.連接AC,BE,DO,DO與AC交于點(diǎn)F,則下列結(jié)論:
①四邊形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四邊形AFOE:S△COD=2:3.
其中正確的結(jié)論有_____.(填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)y=ax2+bx來(lái)表示.已知大棚在地面上的寬度OA為8米,距離O點(diǎn)2米處的棚高BC為米.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)若借助橫梁DE建一個(gè)門(mén),要求門(mén)的高度不低于1.5米,則橫梁DE的寬度最多是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的例題及點(diǎn)撥,補(bǔ)全解題過(guò)程(完成點(diǎn)撥部分的填空),并解決問(wèn)題:例題:如圖1,在等邊△ABC中,M是BC邊上一點(diǎn)(不含端點(diǎn)B,C),N是△ABC的外角∠ACH的平分線上一點(diǎn),且AM=MN.求證:∠AMN=60°
點(diǎn)撥:如圖2,作∠CBE=60°,BE與NC的延長(zhǎng)線相交于點(diǎn)E,得等邊△BEC,連結(jié)EM,易證△ABM≌△EBM( ),可得AM=EM,∠1=∠2;又AM=MN,則EM=MN,可得∠ =∠ ;
由∠3+∠1=∠4+∠5=60°,進(jìn)一步可得∠1=∠2=∠ .
又因?yàn)椤?/span>2+∠6=120,所以∠5+∠6=120°,所以∠AMN=60°.
問(wèn)題:如圖3,四邊形ABCD的四條邊都相等,四個(gè)角都等于90°,M是BC邊上一點(diǎn)(不含端點(diǎn)B,C),N是四邊形ABCD的外角∠DCH的平分線上一點(diǎn),且AM=MN.求∠AMN的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com